

FUNDAMENTALS OF BIOCHEMISTRY

LIFE AT THE MOLECULAR LEVEL

Bi-substrate Reactions

DONALD VOET + JUDITH G. VOET + CHARLOTTE W. PRATT

WILEY

LEHNINGER

Michael M. Cox David L. Nelson

FIFTH EDITION

PRINCIPLES OF BIOCHEMISTRY

FOR SALE ONLY IN INDIA, PAKISTAN, NEPAL SRI LANKA, BANGLADESH AND BHUTAN

Dr. Akhilendra Pratap Bharati Assistant Professor Department of Life Science and Biotechnology

Biochemistry

Jeremy Berg • John L. Tymoczko • Lubert Stryer

 $A + B \stackrel{E}{\Longrightarrow} P + Q$

 \geq ~60% of known biochemical reactions are bi-substrate reaction.

Almost all of these bi-substrate reactions are either transfer reactions in which the enzyme catalyzes the transfer of a specific functional group, X, from one of the substrates to the other or oxidation-reduction reactions in which reducing equivalents are transferred between the two substrates.

 $P - X + B \stackrel{E}{\Longrightarrow} P + B - X$

Although bi-substrate reactions occur through a vast variety of mechanisms, only a few types are commonly observed.

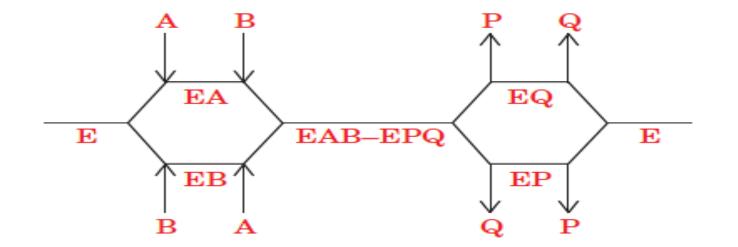
Sequential Reactions

- Reactions in which all substrates must combine with the enzyme before a reaction can occur and products be released are known as sequential reactions.
- In such reactions, the group being transferred, X, is directly passed from A (= P—X) to B, yielding P and Q (= B—X). Hence, such reactions are also called singledisplacement reactions.

- a. Ordered mechanism
- b. Random mechanism

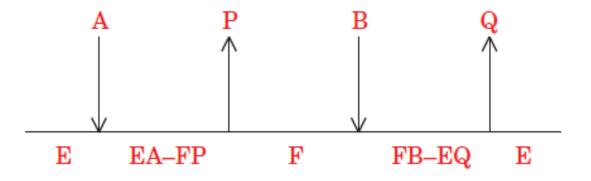
Cleland notation

In a notation developed by W.W. Cleland, substrates are designated by the letters A and B in the order that they add to the enzyme, products are designated by P and Q in the order that they leave the enzyme, the enzyme is represented by a horizontal line, and successive additions of substrates and releases of products are denoted by vertical arrows.


a. Ordered mechanism

> Where A and B are said to be the leading and following substrates, respectively.

Many NAD+ and NADP+ requiring dehydrogenases follow an ordered bi-substrate mechanism in which the coenzyme is the leading substrate.


b. Random mechanism

Some dehydrogenases and kinases operate through Random bi-substrate mechanisms (kinases are enzymes that transfer phosphoryl groups from ATP to other compounds or vice versa).

Ping Pong Reactions

Group-transfer reactions in which one or more products are released before all substrates have been added are known as Ping Pong reactions.

- Here, a functional group X of the first substrate A (= P—X) is displaced from the substrate by the enzyme E to yield the first product P and a stable enzyme form F (= E—X) in which X is tightly (often covalently) bound to the enzyme (Ping).
- ➤ In the second stage of the reaction, X is displaced from the enzyme by the second substrate B to yield the second product Q (= B—X), thereby regenerating the original form of the enzyme, E (Pong).