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Calcium ions Function as a Ubiquitous
Intracellular Messenger

Objectives:
To acquaint the students about:

) Difference in intracellular and extracellular levels of Ca?* ions and
Its maintenance

i) Ca?* ions as signaling molecules
i) Ca?*/Calmodulin-dependent Protein Kinases (CaMKinases)



« Many extracellular signals induce an increase in cytosolic Ca?* level.

-e.g. In egg cells, sudden rise in cytosolic Ca?* concentration upon fertilization by a sperm
triggers a Ca?* wave that is responsible for the onset of embryonic development.

-In muscle cells, Ca?* triggers contraction, and in many secretory cells, including nerve cells,
it triggers secretion.

« Ca?* ions can be used as a sighal because -

- its concentration in the cytosol is normally kept very low (~10-" M), whereas

-its concentration in the extracellular fluid (~10-3 M) and in ER lumen is high.

Thus, a large gradient tends to drive Ca?* into the cytosol across both PM and ER
membrane.

*When a signal transiently opens Ca?* channels in either of these membranes, Ca?* rushes
into the cytosol, increasing the local Ca2* concentration by 10-20 fold and triggering Ca?*-
responsive proteins in the cell.

*Three main types of Ca?* channels can mediate this Ca?* signaling:

1. Voltage-dependent Ca?*channels in PM open in response to membrane depolarization
and allow, e.g., Ca?* to enter activated nerve terminals and trigger neurotransmitter secretion.
2. IP3 -gated Ca?*-release channels allow Ca?* to escape from the ER when the inositol
phospholipid signaling pathway is activated.

3. Ryanodine receptors (so called because they are sensitive to plant alkaloid ryanodine)
react to a change in plasma membrane potential to release Ca?* from the sarcoplasmic
reticulum and thereby stimulate the contraction of muscle cells; they are also present in ER of
many non-muscle cells, including neurons, where they can contribute to Ca?* signaling.



Ca?* concentration in cytosol is kept low in resting cells by several mechanisms.

Eukaryotic cells have:

- A Ca?*-pump in their PM that uses energy from ATP hydrolysis to pump Ca?* out of cytosol.
- An additional Ca?* transport protein (exchanger) in PM that couples efflux of Ca?* to influx
of Na*, on PM of cells that extensively use Ca?* signaling such as muscle and nerve cells.

- A Ca?* pump in ER membrane also has an important role in keeping cytosolic Ca?*
concentration low: this Ca?*-pump enables ER to take up large amounts of Ca?* from
cytosol against a steep concentration gradient, even when Ca?* levels in cytosol are low.

- A low-affinity, high-capacity Ca?* pump in the inner mitochondrial membrane has an
important role in returning the Ca?* concentration to normal after a Ca?* signal; it uses the
electrochemical gradient generated across this membrane during electron-transfer steps of
oxidative phosphorylation to take up Ca?* from cytosol.
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The Frequency of Ca2+ Oscillations Influences a Cell's
Response

Ca?*-sensitive fluorescent indicators, as aequorin or fura-2, are used to monitor cytosolic
Ca2+ in individual cells after inositol phospholipid signaling pathway has been activated.
The initial Ca?* signal is often seen to be small and localized to one or more discrete
regions of the cell. These signals have been called Ca?* blips, quarks, puffs, or sparks,
and they are thought to reflect the local opening of individual (or small groups of) Ca2*-
release channels in the ER and to represent elementary Ca?* signaling units. If the
extracellular signal is sufficiently strong and persistent, this localized signal can
propagate as a regenerative Ca2+ wave through the cytosol, much like an action
potential in an axon. Such a Ca?* "spike" is often followed by a series of further
spikes, each usually lasting seconds.

Waves and the oscillations depend, in part at least, on a combination of positive and
negative feedback by Ca?* on both the IP3-gated Ca?*-release channels and the
ryanodine receptors: the released Ca?* initially stimulates more Ca?* release.But then,
as its concentration gets high enough, the Ca?* inhibits further release. The frequency of
the Ca?* oscillations reflects the strength of the extracellular stimulus, and it can be
translated into a frequency dependent cell response. In some cases, the frequency-
dependent response itself is also oscillatory.



Ca?*/Calmodulin-dependent Protein Kinases (CaMKinases) Mediate Actions of
Ca?* within Animal Cells

*Ca?*-binding proteins serve as transducers of the cytosolic Ca?* signal.

*Ist such protein discovered was troponin C in skeletal muscle cells (role in muscle
contraction).

*A closely related Ca?*-binding protein, k/a calmodulin, is found in all eucaryotic cells,
where it can constitute as much as 1% of the total protein mass.

«Calmodulin functions as a multipurpose intracellular Ca?* receptor, mediating
many Ca?*-regulated processes. It consists of a highly conserved, single polypeptide
chain with four high-affinity Ca?*-binding sites. When activated by binding Ca?*, it
undergoes a conformational change. Because two or more Ca?* ions must bind before
calmodulin adopts its active conformation, the protein responds in a switchlike manner
to increasing concentrations of Ca?*: a tenfold increase in Ca?* concentration, e.g.,
causes a 50-fold increase in calmodulin activation.

*In some cases, calmodulin serves as a permanent regulatory subunit of an enzyme
complex, but mostly the binding of Ca?* enables calmodulin to bind to various target
proteins in the cell to alter their activity.

*When an activated molecule of Ca?*/calmodulin binds its target protein, it undergoes
a marked change in conformation. Many targets as enzymes and membrane transport
proteins calmodulin binding. For example, Ca?*/calmodulin binds to and activates PM
Ca?*-pump that pumps Ca?* out of cells. Thus, whenever Ca2* concentration in cytosol
rises, the pump activates, and restores normal cytosolic Ca?* levels.



‘Many effects of Ca?*, are more indirect and are mediated by protein
phosphorylations catalyzed by a family of Ca?*/calmodulin-dependent protein
kinases (CaM-kinases). These kinases, just like PKA and PKC, phosphorylate
serines or threonines in proteins, and, as with PKA and PKC, the response of a
target cell depends on which CaM-kinase-regulated target proteins are present in
the cell.

*The first CaM-kinases to be discovered is myosin light-chain kinase, which
activates smooth muscle contraction. Another CaM kinase, the phosphorylase
kinase, which activates glycogen breakdown have narrow substrate specificities.

*A number of CaM-kinases, however, have much broader specificities, and these
seem to be responsible for mediating many of the actions of Ca?* in animal cells.

*Some phosphorylate gene regulatory proteins, such as the CREB protein, and in
this way activate or inhibit the transcription of specific genes.



*The best-studied example of such a multifunctional CaM-kinase is CaM-kinase I,
which is found in all animal cells and is especially enriched in the nervous system.

*It constitutes up to 2% of the total protein mass in some regions of brain, and it is highly
concentrated in synapses.
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The structure of Ca2*/calmodulin. (A) The molecule has a "dumbbell" shape, with 2 globular ends
connected by a long, exposed a-helix. Each end has 2 Ca?*-binding domains, each with a loop of
12 amino acids, in which aspartic acid and glutamic acid side chains form ionic bonds with Ca?*.
The 2 Ca?*-binding sites in carboxyl-terminal part of molecule have a 10-fold higher affinity for Caz*
than the two in amino-terminal part. In solution, the molecule is flexible, displaying a range of forms,
from extended to more compact. (B) The major structural change in Ca?*/calmodulin that occurs
when it binds to a target protein.
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CaM-kinase Il has at least 2 remarkable properties that are related.
eIst: it can function as a molecular memory device, switching to an active state when exposed to
Ca?*/calmodulin and then remaining active even after the Ca?* signal has decayed. This is because
the kinase phosphorylates itself (autophosphorylation) as well as other cell proteins when it is
activated by Ca?*/calmodulin. In its autophosphorylated state, the enzyme remains active even in
absence of Ca?*, thereby prolonging duration of kinase activity beyond that of initial activating Ca?*
signal. CaM-kinase Il activation can thereby serve as a memory trace of a prior Ca?* pulse, and has
an important role in some types of memory and learning in the vertebrate nervous system.

*lind remarkable property of CaM-kinase Il : it can use its memory mechanism to act as a
frequency decoder of Ca2+ oscillations. This property is especially important at nerve cell
synapse, where changes in intracellular Ca?* levels in activated postsynaptic cell can lead to long-
term changes in subsequent effectiveness of that synapse.



(Note: All the original contributors of the concept and findings published elsewhere are
gratefully acknowledged while preparing the E-content for the purpose of student reading
material in convenient form for biochemistry and allied discipline).
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