

INTRODUCTION

	Effects	Action
Loading	Shear Force	Design Shear reinforcement
Loading	Bending Moment	Design flexure reinforcement

SHEAR FORCE \& BENDING MOMENT

- Introduction
- Types of beams
- Effects of loading on beams
- The force that cause shearing is known as shear force
- The force that results in bending is known as bending moment
- Draw the shear force and bending moment diagrams

SHEAR FORCE \& BENDING MOMENT

- Members with support loadings applied perpendicular to their longitudinal axis are called beams.
- Beams classified according to the way they are supported.

TYPES OF SUPPORT

fixed support
As a general rule, if a support prevents translation of a body in a given direction, then a force is developed on the body in the opposite direction.

Similarly, if rotation is prevented, a couple moment is exerted on the body.

SHEAR FORCE \& BENDING MOMENT

- Types of beam
a) Determinate Beam

The force and moment of reactions at supports can be determined by using the 3 equilibrium equations of statics i.e.

$$
\Sigma \mathrm{F}_{\mathrm{x}}=0, \Sigma \mathrm{~F}_{\mathrm{y}}=0 \text { and } \Sigma \mathrm{M}=0
$$

b) Indeterminate Beam

The force and moment of reactions at supports are more than the number of equilibrium equations of statics. (The extra reactions are called redundant and represent
the amount of degrees of indeterminacy).

SHEAR FORCE \& BENDING MOMENT

- In order to properly design a beam, it is important to know the variation of the shear and moment along its axis in order to find the points where these values are a maximum.

PRINCIPLE OF MOMENTS

- The moment of a force indicates the tendency of a body to turn about an axis passing through a specific point O .
- The principle of moments, which is sometimes referred to as Varignon's Theorem (Varignon, 1654 - 1722) states that the moment of a force about a point is equal to the sum of the moments of the force's components about the point.

PRINCIPLE OF MOMENTS

In the 2-D case, the magnitude of the moment is:
$M_{o}=$ Force \times distance

BEAM'S REACTION

- If a support prevents translation of a body in a particular direction, then the support exerts a force on the body in that direction.
- Determined using $\Sigma \mathrm{F}_{\mathrm{x}}=0, \Sigma \mathrm{~F}_{\mathrm{y}}=0$ and $\Sigma \mathrm{M}=0$

EXAMPLE 1

The beam shown below is supported by a pin at A and roller at B . Calculate the reactions at both supports due to the loading.

EXAMPLE 1 - Solution

Draw the free body diagram:

By taking the moment at

B, $\Sigma M_{B}=0$
$\Sigma F_{\mathrm{y}}=0$
$\Sigma F_{\mathrm{x}}=0$
$R_{\text {Ay }} \times 9-20 \times 7-40 \times 4$
$=0$
$R_{\mathrm{Ay}}+R_{\mathrm{By}}-20-40$
$=0$
$R_{\text {Ax }}=0$
$9 R_{\text {Ay }}=140+160$
$R_{\text {Ay }}=33.3 \mathrm{kN}$
$R_{\text {By }}=20+40-$
33.3
$R_{\mathrm{By}}=26.7 \mathrm{kN}$

EXAMPLE 2

Determine the reactions at support A and B for the overhanging beam subjected to the loading as shown.

EXAMPLE 2 - Solution

By taking the moment at A :

$$
\Sigma M_{\mathrm{A}}=0
$$

$$
\Sigma F_{y}=0
$$

$$
\Sigma F_{x}=0
$$

$-R_{\text {By }} \times 7+20 \times 9-(15 \times 3) \times 5.5$
$R_{\mathrm{Ay}}+R_{\mathrm{By}}-20-45$
$R_{\text {Ax }}=0$
$=0$
$=0$
$7 R_{\mathrm{By}}=247.5+180$
$R_{\text {By }}=61.07 \mathrm{kN}$
$R_{\text {Ay }}=20+45-$
61.07
$R_{\text {Ay }}=3.93 \mathrm{kN}$

CLASS EXERCISE - 5 mins?

EXAMPLE 3

A cantilever beam is loaded as shown. Determine all reactions at support A.

EXAMPLE 3 - Solution

Draw the free body diagram:

$$
\begin{aligned}
& \Sigma F_{x}=0 \\
& -R_{A x}+20(4 / 5)=0 \\
& -R_{A x}=16 \mathrm{kN}
\end{aligned}
$$

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0 & \Sigma M_{\mathrm{A}}=0 \\
R_{\mathrm{Ay}}-0.5(5)(2)-20(3 / 5) & -M_{A}+0.5(5)(2)(1 / 3)(2)+20(3 / 5)(4)+15=0 \\
=0 & M_{A}=3.3+48+15 \\
R_{\mathrm{Ay}}-5-12=0 & M_{\mathrm{A}}=66.3 \mathrm{kNm} \\
R_{\mathrm{Ay}}=17 \mathrm{kN} &
\end{array}
$$

SHEAR FORCE \& BENDING MOMENT DIAGRAM

SHEAR FORCE \& BENDING MOMENT DIAGRAM

$\boldsymbol{V}=$ shear force
$=$ the force that tends to separate the member
$=$ balances the reaction R_{A}
$\boldsymbol{M}=$ bending moment
$=$ the reaction moment at a particular point (section)
$=$ balances the moment, $R_{A} \cdot x$

SHEAR FORCE \& BENDING MOMENT DIAGRAM

From the equilibrium equations of statics:

$$
\begin{array}{lll}
+\Sigma F_{\mathrm{y}}=0 ; & R_{\mathrm{A}}-V=0 & \therefore V=R_{\mathrm{A}} \\
+\Sigma M_{\mathrm{a}-\mathrm{a}}=0 ; & -M+R_{\mathrm{A}} \cdot x=0 & \therefore M=R_{\mathrm{A}} \cdot x
\end{array}
$$

SHEAR FORCE \& BENDING MOMENT DIAGRAM

$$
\begin{aligned}
& \Sigma F_{\mathrm{y}}=0 \\
& R_{\mathrm{a}}-P-F-V=0 \\
& V=R_{\mathrm{a}}-P-F \\
& \Sigma M \mathrm{a}-\mathrm{a}=0 \\
& -M-F \cdot x_{1}-P \cdot x_{2}+R_{\mathrm{a}} \cdot x_{3}=0 \\
& M=R_{\mathrm{a}} \cdot x_{3}-F \cdot x_{1}-P \cdot x_{2}
\end{aligned}
$$

SHEAR FORCE \& BENDING MOMENT DIAGRAM

Shape deformation due to shear force:

SHEAR FORCE \& BENDING MOMENT DIAGRAM

Shape deformation due to bending moment:

Sign Convention:

- Positive shear force diagram drawn ABOVE the beam
- Positive bending moment diagram drawn BELOW the beam

EXAMPLE 4

a) Calculate the shear force and bending moment for the beam subjected to a concentrated load as shown in the figure. Then, draw the shear force diagram (SFD) and bending moment diagram (BMD).
b) If $P=20 \mathrm{kN}$ and $L=6 \mathrm{~m}$, draw the SFD and BMD for the beam.

EXAMPLE 4 - Solution

a)

By taking the moment at

$$
A:
$$

$$
\Sigma M_{\mathrm{A}}=0
$$

$$
-R_{\mathrm{By}} \times L+P \times L / 2=0
$$

$$
R_{\mathrm{By}}=P / 2 \mathrm{kN}
$$

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0 & \Sigma F_{\mathrm{x}}=0 \\
R_{\mathrm{Ay}}+R_{\mathrm{By}}= & R_{\mathrm{Ax}}=0 \\
P R_{\mathrm{Ay}}=P- & \\
P / 2 & \\
R_{\mathrm{Ay}}=P / 2 & \\
\mathrm{kN} &
\end{array}
$$

EXAMPLE 4 - Solution

Between $0<x<$ L/2:

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0, & -V+P / 2=0 \\
& V=P / 2 \mathrm{kN} \\
\Sigma M_{\mathrm{a}-\mathrm{a}}=0, & -\mathrm{M}+P x / 2=0 \\
& \mathrm{M}=P x / 2 \mathrm{kNm}
\end{array}
$$

If $x=0 \mathrm{~m}, \boldsymbol{V}=\boldsymbol{P} / \mathbf{2} \mathbf{k N}$ and $\boldsymbol{M}=0 \mathrm{kNm}$
If $x=L / 2 \mathrm{~m}, V=P / 2 \mathrm{kN}$ and $M=P L / 4 \mathrm{kNm}$

Between L/2 $<x<$
L:

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0, & -V+P / 2-P=0 \\
& V=-P / 2 \mathrm{kN} \\
\Sigma M_{\mathrm{a}-\mathrm{a}}=0, & -\mathrm{M}+P \mathrm{x} / 2-P(x-L / 2) \\
=0 & \mathrm{M}=P L / 2-P x / 2 \mathrm{kNm}
\end{array}
$$

$$
\text { If } x=L \mathrm{~m}, \boldsymbol{V}=-\boldsymbol{P} / \mathbf{2} \mathbf{k N} \text { and } \boldsymbol{M}
$$

$$
=0 \text { kNm }
$$

If $x=L / 2 \mathrm{~m}, \boldsymbol{V}=-\boldsymbol{P} / \mathbf{2} \mathbf{k N}$ and $\boldsymbol{M}=P L / 4$
kNm

EXAMPLE 4 - Solution

BMD

EXAMPLE 4 - Solution

b)

BMD (kNm)

EXAMPLE 5

Calculate the shear force and bending moment for the beam subjected to a concentrated load as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 5 - Solution

By taking the moment at
A: $\Sigma M_{\mathrm{A}}=0$
$-R_{\mathrm{By}} \times 5+15 \times 3=0$
$R_{\text {By }}=9 \mathrm{kN}$
$\Sigma F_{\mathrm{y}}=0$
$\Sigma F_{x}=0$
$R_{\mathrm{Ay}}+R_{\mathrm{By}}=$
$R_{\text {Ax }}=0$
$15 R_{\text {Ay }}=15$
$-9 R_{\mathrm{Ay}}=6$
kN

EXAMPLE 5 - Solution

BMD (kNm)

EXAMPLE 6

Calculate the shear force and bending moment for the beam subjected to an uniformly distributed load as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 6 - Solution

By taking the moment at A:
$\Sigma M_{\mathrm{A}}=0$
$-R_{\mathrm{By}} \times 3+5 \times 3 \times 3 / 2=$
0
$R_{\mathrm{By}}=7.5 \mathrm{kN}$
$\Sigma F_{\mathrm{y}}=0$
$R_{\mathrm{Ay}}+R_{\mathrm{By}}=5 \times$
$\Sigma F_{\mathrm{x}}=0$
$3 R_{\mathrm{Ay}}=15-$
$7.5 R_{\text {Ay }}=7.5$
kN

EXAMPLE 6 - Solution

These results for V and M can be checked by noting that $\mathrm{d} V / \mathrm{d} x=-w$. This is correct, since positive w acts downward. Also, notice that $\mathrm{d} M / \mathrm{d} x=V$. The maximum moments occurs when $\mathrm{d} M / \mathrm{d} x=V=0$.

$$
\begin{array}{llll}
\Sigma M_{\mathrm{a}-}=0, & -M+7.5 x-5 x(x / 2) & & \begin{array}{l}
M=\text { maximum } \\
\text { when }
\end{array} \\
& & \frac{d M}{d x}=0 \\
& M=7.5 x- & d M=7.5-5 x=0 & \therefore x=1.5 \mathrm{~m}
\end{array}
$$

Therefore, $\boldsymbol{M}_{\max }=5.625 \mathrm{kNm}$

EXAMPLE 6 - Solution

EXAMPLE 7

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 7 - Solution

> By taking the moment at A: $\Sigma M_{\mathrm{A}}=0$
> $2 \times 3 / 2 \times 3 \times 2 / 3-R_{\mathrm{By}} \times 3$
> $=0$
> $R_{\mathrm{By}}=2 \mathrm{kN}$
$\Sigma F_{\mathrm{y}}=0$
$\Sigma F_{\mathrm{x}}=0$
$R_{\text {Ay }}+\mathrm{R}_{\mathrm{By}}=2 \times$
$R_{\text {Ax }}=0$

EXAMPLE 7 - Solution

Theref
ore,
$M_{\text {max }}=$
1.155
kNm

EXAMPLE 7 - Solution

EXAMPLE 8

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 8 - Solution

By taking the moment at	$\Sigma F_{\mathrm{y}}=0$	$\Sigma F_{\mathrm{x}}=0$
$\mathrm{~B}: \Sigma M_{\mathrm{B}}=0$	$R_{\mathrm{By}}=3 \times$	$R_{\mathrm{Bx}}=0$
$M_{\mathrm{B}}=3 \times 4 / 2 \times 4 / 3$	$4 / 2$	
$M_{\mathrm{B}}=8 \mathrm{kNm}$	$R_{\mathrm{By}}=6 \mathrm{kN}$	

EXAMPLE 8 - Solution

SFD (kN)

BMD (kNm)

RELATIONSHIP BETWEEN LOAD, SHEAR FORCE \& BENDING MOMENT

When a beam is subjected to two or more concentrated or distributed load, the way to

calculate and draw the SFD and BMD may not be the same as in the previous situation. REGION OF DISTRIBUTED LOAD

$$
\begin{aligned}
\Sigma F_{y} & =0 ; V-w(x) \Delta x-(V+\Delta V)=0 \\
\Delta V & =w(x) \Delta x
\end{aligned}
$$

$\Sigma M_{0}=0 ;$
$-V \Delta x-M+w(x) \Delta x[k \Delta x]+(M+\Delta M)=0$

(a)
$\Delta M=V \Delta x-w(x) k \Delta x^{2}$
Dividing by Δx and taking the limit as $\Delta x=$ the above two equations become:
Slope of
the shear $\frac{d V}{d x}=-w(x)$
diagram at
each point
Slope
moment diagram at each

> nsity at each point $\frac{d M}{d x}=V \quad \begin{aligned} & \text { Shear at } \\ & \text { each point }\end{aligned}$

REGION OF DISTRIBUTED LOAD

- We can integrate these areas between any two points to get change in shear and moment.
$\begin{array}{r}\text { Change in } \\ \text { shear }\end{array} \Delta V=-\int w(x) d x$
Area under distributed loading

Change in moment $\Delta M=\int V(x) d x$

Area under shear diagram

USEFUL TIPS...

- Slope of bending moment always determined by the shape of shear force lines. The changes in slope (sagging or hogging also depends on the changes in shear force values)
- When shear force intersects BMD axis, there is a maximum moment
- When SF maximum, BM minimum and vice versa
- SFD and BMD always start and end with zero values (unless at the point where there is a moment/couple)
- When a moment/couple acting:
- Clockwise (\downarrow) (+), Anticlockwise (\uparrow) (-)

EXAMPLE 9

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 9 - Solution

By taking the moment at A :
$\Sigma F_{y}=0$
$\Sigma F_{\mathrm{x}}=0$
$\Sigma M_{\mathrm{A}}=0$
$R_{\mathrm{Ay}}+R_{\mathrm{By}}=10 \times 4+$
$R_{\text {Ax }}=0$
$-R_{\text {By }} \times 4-3+10 \times 4 \times 4 / 2+12 \times 5$
12
$=0$
$R_{\text {Ay }}=17.75 \mathrm{kN}$
$R_{\mathrm{By}}=34.25 \mathrm{kN}$

EXAMPLE 9 - Solution

SFD
 (kN)

EXAMPLE 10

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 10 - Solution

By taking the moment at
A: $\sum M_{\mathrm{A}}=0$
$-M_{A}+4 \times 3 \times 3 / 2+5 \times 5$
$=0$
$M_{\mathrm{A}}=43 \mathrm{kNm}$

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0 & \Sigma F_{\mathrm{x}}=0 \\
R_{\mathrm{Ay}}=4 \times 3+ & R_{\mathrm{Ax}}=0
\end{array}
$$

EXAMPLE 10 - Solution

BMD (kNm)

EXAMPLE 11

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 11 - Solution

By taking the moment at A :
$\Sigma M_{A}=0$
$25 \times 1+5 \times 2+20 \times 4-R_{\mathrm{By}} \times 7$
$=0$
$R_{\mathrm{By}}=16.43 \mathrm{kN}$

$$
\begin{array}{ll}
\Sigma F_{\mathrm{y}}=0 & \Sigma F_{\mathrm{x}}=0 \\
R_{\mathrm{Ay}}+R_{\mathrm{By}}=25+5+ & R_{\mathrm{Ax}}=0
\end{array}
$$

$$
20
$$

$$
R_{\mathrm{Ay}}=33.57 \mathrm{kN}
$$

EXAMPLE 11 - Solution

25 kN | 5 | 20 kN |
| :--- | :--- |
| | kN |

BMD
(kNm)

EXAMPLE 12

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 12 - Solution

By taking the moment at A :

$$
\Sigma M_{\mathrm{A}}=0
$$

$$
10 \times 4 \times 2+20 \times 10-R_{B y} \times 8
$$

$$
=0
$$

$R_{\text {By }}=35 \mathrm{kN}$

$$
\Sigma F_{y}=0
$$

$$
\Sigma F_{x}=0
$$

$$
R_{\mathrm{Ay}}+\mathrm{R}_{\mathrm{By}}=10 \times 4+
$$

$$
R_{\mathrm{Ax}}=0
$$

EXAMPLE 12 - Solution

EXAMPLE 13

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 13 - Solution

By taking the moment at	$\Sigma F_{\mathrm{y}}=0$	$\Sigma F_{\mathrm{x}}=0$
$\mathrm{~A}: \Sigma M_{\mathrm{A}}=0$	$R_{\mathrm{Ay}}+\mathrm{R}_{\mathrm{By}}=10$	$R_{\mathrm{Ax}}=0$
$10 \times 3 \times 2.5-\mathrm{R}_{\mathrm{By}} \times 5.5=$	$\times 3 R_{\mathrm{Ay}}=30-$	
0	$13.64 R_{\mathrm{Ay}}=$	
$R_{\mathrm{By}}=13.64 \mathrm{kN}$	16.36 kN	

EXAMPLE 13 - Solution

16.36 kN
13.64 kN

SFD
(kN)

$$
\begin{aligned}
& \frac{x}{16.36}=\frac{3-x}{13.64} \\
& 13.64 x=49.08-16.36 x \\
& 30 x=49.08 \\
& x=1.636
\end{aligned}
$$

BMD
 (kNm)
 16.3
 6

EXAMPLE 14

Calculate the shear force and bending moment for the beam subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 14 - Solution

By taking the moment at A :

$$
\begin{aligned}
& \Sigma M_{\mathrm{A}}=0 \\
& 25 \times 10 \times 5+50 \times 5+50 \times 14-R_{\mathrm{By}} \times \\
& 10=0 \\
& R_{\mathrm{By}}=220 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma F_{\mathrm{y}}=0 \\
& R_{\mathrm{Ay}}+R_{\mathrm{By}}=25 \times 10+50+50 \\
& R_{\mathrm{Ay}}=130 \mathrm{kN} \\
& \Sigma F_{\mathrm{x}}=0 \\
& R_{\mathrm{Ax}}=0
\end{aligned}
$$

EXAMPLE 14 - Solution

CLASS EXERCISE

48 kN

CONTRA Flexture POINT OF SHEAR FORCE \& BENDING MOMENT

- Contra flexure point is a place where positive shear force/bending moment shifting to the negative region or viceversa.
- Contra flexure point for shear: $V=0$
- Contra flexure point for moment: $M=0$
- When shear force is zero, the moment is

maximum.

- Maximum shear force usually occur at the support / concentrated load.

CONTRA FLEXTURE POINT OF SHEAR

STATICALLY DETERMINATE FRAMES

- For a frame to be statically determinate, the number of unknown (reactions) must be able to solved using the equations of equilibrium.

EXAMPLE 15

Calculate the shear force and bending moment for the frame subjected to the loads as shown in the figure, then draw the shear force diagram (SFD) and bending moment diagram (BMD).

EXAMPLE 15 - Solution

$$
\begin{aligned}
& \Sigma M_{\mathrm{A}}=0 \\
& 4 \times 5 \times 2.5+2 \times 3-R_{\mathrm{By}} \times 5=0 \\
& R_{\mathrm{By}}=11.2 \mathrm{kN} \\
& \Sigma F_{\mathrm{y}}=0 \\
& R_{\mathrm{Ay}}+R_{\mathrm{By}}=4 \times 5 \\
& R_{\mathrm{Ay}}=8.8 \mathrm{kN} \\
& \Sigma F_{\mathrm{x}}=0 \\
& R_{\mathrm{Ax}}=2 \mathrm{kN}
\end{aligned}
$$

EXAMPLE 15 - Solution

$$
\begin{aligned}
& \Sigma M_{\mathrm{A}}=0: 2 \times 3-M_{\mathrm{C}}=0 \\
& \therefore M_{\mathrm{C}}=6 \mathrm{kNm} \\
& \Sigma F_{\mathrm{y}}=0 \\
& \therefore R_{\mathrm{cy}}=8.8 \mathrm{kN}
\end{aligned}
$$

8.8 kN

EXAMPLE 15 - Solution

$$
\begin{gathered}
\Sigma F_{\mathrm{y}}=0: R_{\mathrm{Cy}}+R_{\mathrm{Dy}}=4 \times 5 \\
R_{\mathrm{Dy}}=20-8.8=11.2 \mathrm{kN}
\end{gathered}
$$

$\Sigma M_{C}=0$:
$M_{C}+4 \times 5 \times 2.5-R_{D y} \times 5-M_{D}=0$ $M_{D}=0 \mathrm{kNm}$

EXAMPLE 15 - Solution

$$
\begin{aligned}
& \Sigma F_{\mathrm{y}}=0: \\
& R_{\mathrm{Dy}}=11.2 \mathrm{kN}
\end{aligned}
$$

EXAMPLE 15 - Solution

$$
\begin{aligned}
& \frac{x}{8.8}=\frac{5-x}{11.2} \\
& 11.2 x=44-8.8 x \\
& 20 x=44 \\
& x=2.2
\end{aligned}
$$

$M_{\max }=8.8 \times 2.2 \times 0.5+6=15.7 \mathrm{kNm}$

SFD (kN)
BMD (kNm)

