LECTURE 10

Polytropic Process

$$
\begin{gathered}
\mathrm{W}=\int \mathrm{cdv} / \mathrm{v}^{\mathrm{n}} \\
\mathrm{w}=\left(\mathrm{P}_{1} \mathrm{v}_{1}-\mathrm{P}_{2} \mathrm{v}_{2}\right) /(\mathrm{n}-1) \\
\mathrm{du}=\mathrm{dq}-\mathrm{dw} \\
\mathrm{u}_{2}-\mathrm{u}_{1}=\mathrm{q}-\left(\mathrm{P}_{1} \mathrm{v}_{1}-\mathrm{P}_{2} \mathrm{v}_{2}\right) /(\mathrm{n}-1) \\
\mathrm{u}_{2}-\mathrm{u}_{1}=\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=\mathrm{q}-\mathrm{w} \\
\mathrm{q}=\mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) /(\gamma-1)+\left(\mathrm{P}_{1} \mathrm{v}_{1}-\mathrm{P}_{2} \mathrm{v}_{2}\right) /(\mathrm{n}-1) \\
=\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)\{1 /(\mathrm{n}-1)-1 /(\gamma-1)\} \\
=\left(\mathrm{P}_{1} \mathrm{v}_{1}-\mathrm{P}_{2} \mathrm{v}_{2}\right) /(\mathrm{n}-1)\{(\gamma-\mathrm{n}) /(\gamma-1)\} \\
=\mathrm{w} \cdot\{(\gamma-\mathrm{n}) /(\gamma-1)\}
\end{gathered}
$$

Problem: Air (ideal gas with $\gamma=1.4$) at 1 bar and 300 K is compressed till the final volume is one-sixteenth of the original volume, following a polytropic process $\mathrm{Pv}^{1.25}=$ const. Calculate (a) the final pressure and temperature of the air, (b) the work done and (c) the energy transferred as heat per mole of the air.

Solution: (a) $\mathrm{P}_{1 \mathrm{~V}_{1}}{ }^{1.25}=\mathrm{P}_{2} \mathrm{v}_{2}{ }^{1.25}$

$$
\begin{aligned}
\mathrm{P}_{2} & =\mathrm{P}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{1.25}=1(16)^{1.25}=\mathbf{3 2} \mathbf{b a r} \\
\mathrm{T}_{2}=\left(\mathrm{T}_{1} \mathrm{P}_{2} \mathrm{v}_{2}\right) /\left(\mathrm{P}_{1} \mathrm{v}_{1}\right) & =(300 \times 32 \times 1) /(1 \times 16) \\
& =\mathbf{6 0 0 K}
\end{aligned}
$$

(b) $\mathrm{w}=\left(\mathrm{P}_{1} \mathrm{v}_{1}-\mathrm{P}_{2} \mathrm{v}_{2}\right) /(\mathrm{n}-1)$

$$
\begin{aligned}
& =\mathrm{R}_{\mathrm{u}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) /(\mathrm{n}-1) \\
& =8.314(300-600) /(1.25-1)=\mathbf{- 9 . 9 7 7} \mathbf{~ k J} / \mathbf{m o l}
\end{aligned}
$$

(c) $\mathrm{q}=\mathrm{w} \cdot\{(\gamma-\mathrm{n}) /(\gamma-1)\}$

$$
=-9.977(1.4-1.25) /(1.4-1)
$$

$=\mathbf{- 3 . 7 4 2} \mathrm{kJ} / \mathrm{mol}$

Unresisted or Free expansion

In an irreversible process, $w \neq \int$ Pdv
Vessel A: Filled with fluid at pressure
Vessel B: Evacuated/low pressure fluid
Valve is opened: Fluid in A expands and fills both vessels A and B. This is known as unresisted expansion or free expansion.

No work is done on or by the fluid.
No heat flows (Joule's experiment) from the boundaries as they are insulated.

$$
\mathrm{U}_{2}=\mathrm{U}_{1} \quad\left(\mathrm{U}=\mathrm{U}_{\mathrm{A}}+\mathrm{U}_{\mathrm{B}}\right)
$$

Problem: A rigid and insulated container of $2 \mathrm{~m}^{3}$ capacity is divided into two equal compartments by a membrane. One compartment contains helium at 200 kPa and $127^{\circ} \mathrm{C}$ while the second compartment contains nitrogen at 400 kPa and $227^{\circ} \mathrm{C}$. The membrane is punctured and the gases are allowed to mix. Determine the temperature and pressure after equilibrium has been established. Consider helium and nitrogen as perfect gases with their C_{v} as $3 R / 2$ and $5 R / 2$ respectively.

Solution: Considering the gases contained in both the compartments as the system, $\mathrm{W}=0$ and $\mathrm{Q}=0$. Therefore, $\Delta \mathrm{U}=0\left(\mathrm{U}_{2}=\mathrm{U}_{1}\right)$

$$
\begin{aligned}
\text { Amount of helium } & =\mathrm{N}_{\mathrm{He}}=\mathrm{P}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}} / \mathrm{R}_{\mathrm{u}} \mathrm{~T}_{\mathrm{A}} \\
& =200 \times 10^{3} \times 1 /(8.314 \times 400) \\
& =60.14 \mathrm{~mol} . \\
\text { Amount of nitrogen } & =\mathrm{N}_{\mathrm{N} 2}=\mathrm{P}_{\mathrm{B}} V_{\mathrm{B}} / \mathrm{R}_{\mathrm{u}} \mathrm{~T}_{\mathrm{B}} \\
& =400 \times 10^{3} \times 1 /(8.314 \times 500) \\
& =96.22 \mathrm{~mol} .
\end{aligned}
$$

Let T_{f} be the final temperature after equilibrium has been established. Then,
$\left[\mathrm{NC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{f}}-400\right)\right]_{\mathrm{He}}+\left[\mathrm{NC}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{f}}-500\right)\right]_{\mathrm{N} 2}=0$

$$
\mathrm{R}_{\mathrm{u}}\left[60.14\left(\mathrm{~T}_{\mathrm{f}-}-400\right) 3+96.22\left(\mathrm{~T}_{\mathrm{f}}-500\right) 5\right] / 2=0
$$

Or, $\mathbf{T}_{\mathrm{f}}=\mathbf{4 7 2 . 7 3} \mathbf{K}$
The final pressure of the mixture can be obtained by applying the equation of state:
$\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}=\left(\mathrm{N}_{\mathrm{He}}+\mathrm{N}_{\mathrm{N} 2}\right) \mathrm{R}_{\mathrm{u}} \mathrm{T}_{\mathrm{f}}$
$2 \mathrm{P}_{\mathrm{f}}=(60.14+96.22) 8.314(472.73)$
or, $\mathbf{P}_{\mathrm{f}}=\mathbf{3 0 7 . 2 7} \mathbf{~ k P a}$

