LECTURE 13

A systematic approach to problem solving

Step 1. Identify the system and draw a sketch of it. The system that is about to be analyzed should be identified on the sketch by drawing its boundaries using the dashed lines.

Step 2. List the given information on the sketch. Heat and work interactions if any should also be indicated on the sketch with proper directions.

Step 3. State any assumptions:
The simplifying assumptions that are made to solve a problem should be stated and fully justified.
Commonly made assumptions:
(a) Assuming process to be quasi-equilibrium
(b) Neglecting $P E$ and $K E$
(c) Treating gas as ideal
(d) Neglecting heat transfer from insulated systems.

Step 5. Apply the conservation equations.
Step 6. Draw a process diagram.
Determine the required properties and unknowns.

Problem \# 1 A $0.1 \mathrm{~m}^{3}$ rigid tank contains steam initially at 500 kPa and $200^{\circ} \mathrm{C}$. The steam is now allowed to cool until the temperature drops to $50^{\circ} \mathrm{C}$. Determine the amount of heat transfer during this process and the final pressure in the tank.

State 1: $P_{l}=500 \mathrm{kPa}, T_{l}=200^{\circ} \mathrm{C}$

$$
v_{l}=0.4249 \mathrm{~m}^{3} / \mathrm{kg}, u_{l}=2642.9 \mathrm{~kJ} / \mathrm{kg}
$$

State 2: $v_{2}=v_{l}=0.4269 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
T_{2}=50^{\circ} \mathrm{C} \rightarrow v_{f} & =0.001 \mathrm{~m}^{3} / \mathrm{kg} \\
v_{g} & =12.03 \mathrm{~m}^{3} / \mathrm{kg} \\
u_{f} & =209.32 \mathrm{~kJ} / \mathrm{kg} \\
u_{g} & =2443.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=P_{\text {sat }} @ 50^{\circ} \mathrm{c}=\underline{\mathbf{1 2 . 3 4 9} \mathbf{~ k P a}} \\
& v_{2}=v_{f}+x_{2} v_{f g} \\
& 0.4249=0.001+x_{2}(12.03=0.001) \\
& x_{2}=0.0352 \\
& u_{2}=u_{f}+x_{2} u_{g} \\
& =209.32+(0.0352)(2443.5-209.32) \\
& =288.0 \mathrm{~kJ} / \mathrm{kg} \\
& m=V / u=\left(0.1 \mathrm{~m}^{3} / \mathrm{kg}\right) /\left(0.4249 \mathrm{~m}^{3} / \mathrm{kg}\right) \\
& =0.235 \mathrm{~kg} \\
& -Q_{\text {out }}=\Delta U=m\left(u_{2}-u_{1}\right) \\
& Q_{\text {out }}=m\left(u_{1}-u_{2}\right) \\
& =(0.235)(2642.9-288) \\
& =553.4 \mathrm{~kg}
\end{aligned}
$$

Problem \# 2 A piston/cylinder contains 50 kg of water at 200 kPa with a volume of $0.1 \mathrm{~m}^{3}$. Stop in the cylinder is placed to restrict the enclosed volume to $0.5 \mathrm{~m}^{3}$. The water is now heated until the piston reaches the stops. Find the necessary heat transfer.

At 200 kPa ,
$v_{f}=0.001061 \mathrm{~m}^{3} / \mathrm{kg}$
$v_{f g}=0.88467 \mathrm{~m}^{3} / \mathrm{kg}$
$h_{f}=504.68 \mathrm{~kJ} / \mathrm{kg}$
$h_{f g}=2201.96 \mathrm{~kJ} / \mathrm{kg}$
This is a constant pressure process. Hence,
$Q=\Delta H$
The specific volume initially,

$$
v_{i}=0.1 / 50=0.002 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\begin{aligned}
v & =v_{f}+x v_{f g} \\
& =0.001061+x(0.88467)
\end{aligned}
$$

Therefore, $x=(0.002-0.001061) / 0.88467$
$=0.001061$

$$
\begin{aligned}
& h=h_{f}+x h_{f g} \\
&=504.68+0.001061(2201.96) \\
&=507.017 \mathrm{~kJ} / \mathrm{kg} \\
& \\
& \underline{v_{\text {final }}}=0.5 / 50=0.01 \mathrm{~m}^{3} / \mathrm{kg} \\
& v=v_{f}+x v_{f g}
\end{aligned}
$$

Therefore, $x=(0.01-0.001061) / 0.88467$

$$
=0.01
$$

$$
h_{\text {final }}=504.68+0.01(2201.96)
$$

$$
=526.69 \mathrm{~kJ} / \mathrm{kg}
$$

$$
Q=\Delta H=50(526.69-507.017)
$$

$$
=\underline{983.65 \mathrm{~kJ} / \mathrm{kg}}
$$

Problem \# 3 A rigid insulated tank is separated into two rooms by a stiff plate. Room A of $0.5 \mathrm{~m}^{3}$ contains air at $250 \mathrm{kPa}, 300 \mathrm{~K}$ and room B of $1 \mathrm{~m}^{3}$ has air at $150 \mathrm{kPa}, 1000 \mathrm{~K}$. The plate is removed and the air comes to a uniform state without any heat transfer. Find the final pressure and temperature.

The system comprises of room A and B together. This is a constant internal energy process as there is no heat and work exchange with the surroundings.

$$
\begin{aligned}
m_{A} & =P_{A} V_{A} / R T_{A} \\
& =(250 \times 1000 \times 0.5) /(287 \times 300) \\
& =1.452 \mathrm{~kg} \\
m_{B} & =P_{B} V_{B} / R T_{B} \\
& =(150 \times 1000 \times 1.0) /(287 \times 1000) \\
& =0.523 \mathrm{~kg}
\end{aligned}
$$

$\Delta U_{A}+\Delta U_{B}=0$
Let T_{f} be the final temperature at equilibrium

$$
\begin{aligned}
& m_{A}\left(T_{f}-300\right)+m_{B}\left(T_{f}-1000\right)=0 \\
& 1.452\left(T_{f}-300\right)+0.523\left(T_{f}-1000\right)=0 \\
& T_{f}=\underline{\mathbf{4 8 5 . 3 7} \mathbf{~ K}} \\
& P_{f}=(1.452+0.523) \times 287 \times 485.37 / 1.5 \\
& \quad=\underline{\mathbf{1 8 3 . 4 1} \mathbf{~ k P a}}
\end{aligned}
$$

Step 1: Draw a sketch of the system and system boundaries.

Step 4: Make realistic assumptions, if necessary.

Step 2: List the given information on the sketch.

Step 5: Apply relevant conservation equations and simplify them.

Step 6: Show the process on a property diagram.

Problem \# 4 A piston / cylinder assembly contains $0.1 \mathrm{~m}^{3}$ of superheated steam at 10 bar and $400^{\circ} \mathrm{C}$. If the steam is allowed to expand reversibly and adiabatically to a pressure of 3 bar, calculate the work done by the steam.

At 10 bar and $400^{\circ} \mathrm{C}$,
$\mathrm{v}=0.3065 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{h}=3264.4 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}=7.4665 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
At 3 bar,

$$
\mathrm{s}_{\mathrm{g}}=6.9909 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

This is an isentropic process as initial entropy value is greater than s_{g} at 3 bar, the steam is superheated at the end of the process.
At 3 bar and $200^{\circ} \mathrm{C}$,
$\mathrm{s}=7.3119 \mathrm{~kJ} / \mathrm{kg}$ K and
at $300^{\circ} \mathrm{C}, \mathrm{s}=7.7034 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
therefore, the final state is having a temperature between $200^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$.

Equating $\mathrm{s}_{\mathrm{i}}=\mathrm{sfinal}$,
Find the enthalpy and specific volume by interpolation. Then calculate u_{i} and $u_{\text {final }}$.

The work done $=\Delta U=\mathrm{m}\left(\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\text {final }}\right)$

