
 

Thermodynamic Temperature Scale 

 

To define a temperature scale that does not 

depend on the thermometric property of a 

substance, Carnot principle can be used since the 

Carnot engine efficiency does not depend on the 

working fluid. It depends on the temperatures of 

the reservoirs between which it operates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Consider the operation of three reversible 

engines 1, 2 and 3. The engine 1 absorbs energy 

Q1 as heat from the reservoir at T1, does work 

W1 and rejects energy Q2 as heat to the reservoir 

at T2. 

 

Let the engine 2 absorb energy Q2 as heat from 

the reservoir at T2 and does work W2 and rejects 

energy Q3 as heat to the reservoir at T3.  

 

The third reversible engine 3, absorbs energy 

Q1as heat from the reservoir at T1, does work W3 

and rejects energy Q3 as heat to the reservoir at 

T3.  

 

 

1 = W1 / Q1 = 1- Q2/Q1 = f(T1,T2) 

 

or, Q1/Q2 = F(T1,T2) 

2 = 1- Q3/Q2 = f(T2,T3) 

or, T2/T3 = F(T2,T3) 

3 = 1- Q3/Q1 = f(T1,T3) 



T1/T3 = F(T1,T3) 

Then , Q1/Q2 = (Q1/Q3)/(Q2/Q3) 

Or, F(T1,T2) = F(T1,T3) /F(T2,T3) 

Since T3 does not appear on the left side, on the 

RHS also T3 should cancel out. This is possible 

if the function F can be written as  

 

F(T1, T2) = (T1)  (T2) 

 

(T1)  (T2) = {(T1)  (T3)} / {(T2)  (T3)} 

    = (T1)  (T2) 

Therefore,  (T2) = 1 / (T2) 

Hence, Q1 / Q2 = F(T1,T2) = (T1)/ (T2) 

Now, there are several functional relations that 

will satisfy this equation.  For the 

thermodynamic scale of temperature, Kelvin 

selected the relation  



  

Q1/Q2 = T1/T2  

 

That is, the ratio of energy absorbed to the 

energy rejected as heat by a reversible engine is 

equal to the ratio of the temperatures of the 

source and the sink.  

 

The equation can be used to determine the 

temperature of any reservoir by operating a 

reversible engine between that reservoir and 

another easily reproducible reservoir and by 

measuring efficiency (heat interactions). The 

temperature of easily reproducible thermal 

reservoir can be arbitrarily assigned a numerical 

value  (the reproducible reservoir can be at triple 

point of water and the temperature value 

assigned 273.16 K). 

 

The efficiency of a Carnot engine operating 

between two thermal reservoirs the temperatures 

of which are measured on the thermodynamic 

temperature scale, is given by  

 

1  = 1- Q2/Q1 = 1 – T2/T1 



The efficiency of a Carnot engine, using an ideal 

gas as the working medium and the temperature 

measured on the ideal gas temperature scale is 

also given by a similar expression.  

 

(COP)R = QL /(QH – QL) = TL / (TH – TL) 

(COP)HP= QH /(QH – QL) = TH / (TH – TL) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Clausius Inequality 

 

For a Carnot cycle  

 

Q1/Q2=T1/T2 

 

Or   Q1/T1-Q2/T2=0 for a reversible engine. 

 

With the usual sign convention, that is, heat flow 

into a system taken as positive and heat outflow 

of the system taken as negative 

 

Q1/T1+Q2/T2=0    or   Qi/Ti=0 

 

For  an irreversible engine absorbing Q1 amount 

of heat from a reservoir at T1 and rejecting Q2
1 

to a reservoir at T2, then  

    1-Q2
1/Q11-Q2/Q1 

 

or     1-Q2
1/Q11-T2/T1 

 

or  Q2
1/Q1T2/T1 

 

or   Q2
1/T2Q1/T1 

 



making use of the sign convention, we get 

 

  Q2
1/T2+Q1/T10 

 

Or   Q/T0 for an irreversible engine 

 

Replacement of a Reversible process by an 

equivalent process 

 

Let us consider cyclic changes in a system other 

than heat engines. If the cycle can be split up 

into a large number of heat engine cycles then 

the above observation can be made use of in 

relating the heat interactions with the absolute 

temperatures.  

 

 

 

 

 

 

 

 

 



Any reversible process can be approximated by 

a series of reversible, isothermal and reversible, 

adiabatic processes. 

 

Consider a reversible process 1-2. The same 

change of a state can be achieved by process 1-a 

(reversible adiabatic process), isothermal 

process a-b-c and a reversible adiabatic process 

c-2. The areas 1-a-b and b-c-2 are equal. From 

the first law 

 

U2-U1=Q1-a-b-c-2-W1-a-b-c-2 

 

Consider the cycle 1-a-b-c-2-b-1. The net work 

of the cycle is zero. Then 

 

                01221 bcba WWdW  

 

or   

 

211221   bbcba WWW  

 

 

 



 

the heat interaction along the path 1-a-b-c-2 is 

 

Q1-a-b-c-2=Q1-a+Qa-b-c+Qc-2=Qa-b-c 

 

Since 1-a and c-2 are reversible adiabatic paths. 

Hence 

 

U2-U1=Qa-b-c-W1-b-2 

 

Application of the first law of the 

thermodynamics to the process 1-b-2 gives 

 

  U2-U1=Q1-b-2-W1-b-2 

 

Comparing the two equations 

 

  Qa-b-c=Q1-b-2  

 

The heat interaction along the reversible path 1-

b-2 is equal to that along the isothermal path a-

b-c. Therefore a reversible process can be 

replaced by a series of reversible adiabatic and 

reversible isothermal processes.  

 



Clausius Inequality 

 

A given cycle may be subdivided by drawing a 

family of reversible, adiabatic lines. Every two 

adjacent adiabatic lines may be joined by two 

reversible isotherms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The heat interaction along the reversible path is 

equal to the heat interaction along the reversible 

isothermal path. 



 

The work interaction along the reversible path is 

equal to the work interaction along the reversible 

adiabatic and the reversible isothermal path. 

 

That is, 

 

Qa-b=Qa1-b1 and Qc-d=Qc1-d1   

 

 a1-b1-d1-c1 is a Carnot cycle.  

 

The original reversible cycle thus is a split into a 

family of Carnot cycles. For every Carnot cycle  

  0/ TdQ  . Therefore for the given reversible 

cycle, 

  0/ TdQ   

 

If the original cycle is irreversible 

 

   0/TdQ  

 

so the generalized observation is  

 

  0/TdQ  



 

Whenever a system undergoes a cyclic change, 

however complex the cycle may be( as long as it 

involves heat and work interactions), the 

algebraic sum of all the heat interactions divided 

by the absolute temperature at which heat 

interactions are taking place considered over the 

entire cycle is less than or equal to zero (for a 

reversible cycle). 

 

 

 

 

 

 

 

 

 

 


