
PYTHON TUTORIAL

What is Python?

Python is a popular programming language. It was created by Guido van Rossum, and

released in 1991.

It is used for:

• web development (server-side),

• software development,

• mathematics,

• system scripting.

What can Python do?

• Python can be used on a server to create web applications.

• Python can be used alongside software to create workflows.

• Python can connect to database systems. It can also read and modify files.

• Python can be used to handle big data and perform complex mathematics.

• Python can be used for rapid prototyping, or for production-ready software

development.

Why Python?

• Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

• Python has a simple syntax similar to the English language.

• Python has syntax that allows developers to write programs with fewer lines than

some other programming languages.

• Python runs on an interpreter system, meaning that code can be executed as soon

as it is written. This means that prototyping can be very quick.

• Python can be treated in a procedural way, an object-oriented way or a functional
way.

Good to know

• The most recent major version of Python is Python 3. However, Python 2, although

not being updated with anything other than security updates, is still quite popular.

• In this tutorial Python will be written in a text editor. It is possible to write Python in

an Integrated Development Environment (IDE), such as Thonny, Pycharm, Netbeans

or Eclipse which are particularly useful when managing larger collections of Python
files.

Python Syntax compared to other programming languages

• Python was designed for readability, and has some similarities to the English

language with influence from mathematics.

• Python uses new lines to complete a command, as opposed to other programming

languages which often use semicolons or parentheses.

• Python relies on indentation, using whitespace, to define scope; such as the scope of

loops, functions and classes. Other programming languages often use curly-brackets
for this purpose.

Python Install

Many PCs and Macs will have python already installed.

To check if you have python installed on a Windows PC, search in the start bar for Python or

run the following on the Command Line (cmd.exe):

C:\Users\Your Name>python --version

To check if you have python installed on a Linux or Mac, then on linux open the command

line or on Mac open the Terminal and type:

python --version

If you find that you do not have Python installed on your computer, then you can download

it for free from the following website: https://www.python.org/

Python Quickstart

Python is an interpreted programming language, this means that as a developer you write

Python (.py) files in a text editor and then put those files into the python interpreter to be

executed.

The way to run a python file is like this on the command line:

C:\Users\Your Name>python helloworld.py

Where "helloworld.py" is the name of your python file.

Let's write our first Python file, called helloworld.py, which can be done in any text editor.

helloworld.py

print("Hello, World!")

Simple as that. Save your file. Open your command line, navigate to the directory where

you saved your file, and run:

C:\Users\Your Name>python helloworld.py

The output should read:

Hello, World!

The Python Command Line

To test a short amount of code in python sometimes it is quickest and easiest not to write

the code in a file. This is made possible because Python can be run as a command line itself.

Type the following on the Windows, Mac or Linux command line:

C:\Users\Your Name>python

Or, if the "python" command did not work, you can try "py":
C:\Users\Your Name>py

From there you can write any python, including our hello world example from earlier in the

tutorial:

C:\Users\Your Name>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on

win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Which will write "Hello, World!" in the command line:

C:\Users\Your Name>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on

win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Hello, World!

Whenever you are done in the python command line, you can simply type the following to

quit the python command line interface:

exit()

Execute Python Syntax

As we learned in the previous page, Python syntax can be executed by writing directly in

the Command Line:

>>> print("Hello, World!")

Hello, World!

Or by creating a python file on the server, using the .py file extension, and running it in the

Command Line:

C:\Users\Your Name>python myfile.py

Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability only, the

indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example
if 5 > 2:

 print("Five is greater than two!")

Python will give you an error if you skip the indentation:

Example

Syntax Error:

if 5 > 2:

print("Five is greater than two!")

Example
if 5 > 2:

 print("Five is greater than two!")

if 5 > 2:

 print("Five is greater than two!")

You have to use the same number of spaces in the same block of code, otherwise Python

will give you an error:

Syntax Error:

if 5 > 2:

 print("Five is greater than two!")

 print("Five is greater than two!")

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do different things.

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Python Numbers

There are three numeric types in Python:

• int

• float

• complex

Variables of numeric types are created when you assign a value to them:

Example
x = 1 # int

y = 2.8 # float

z = 1j # complex

To verify the type of any object in Python, use the type() function:

Example
print(type(x))

print(type(y))

print(type(z))

Int

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited

length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print(type(x))

print(type(y))

print(type(z))

Float

Float, or "floating point number" is a number, positive or negative, containing one or more

decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

Float can also be scientific numbers with an "e" to indicate the power of 10.

Example

Floats:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

Type Conversion

You can convert from one type to another with the int(), float(),

and complex() methods:

Example

Convert from one type to another:

x = 1 # int

y = 2.8 # float

z = 1j # complex

#convert from int to float:

a = float(x)

#convert from float to int:

b = int(y)

#convert from int to complex:

c = complex(x)

print(a)

print(b)

print(c)

print(type(a))

print(type(b))

print(type(c))

Note: You cannot convert complex numbers into another number type.

Random Number

Python does not have a random() function to make a random number, but Python has a

built-in module called random that can be used to make random numbers:

Example

Import the random module, and display a random number between 1 and 9:

import random

print(random.randrange(1, 10))

Python Casting

Specify a Variable Type

There may be times when you want to specify a type on to a variable. This can be done with

casting. Python is an object-orientated language, and as such it uses classes to define data

types, including its primitive types.

Casting in python is therefore done using constructor functions:

• int() - constructs an integer number from an integer literal, a float literal (by

removing all decimals), or a string literal (providing the string represents a whole

number)

• float() - constructs a float number from an integer literal, a float literal or a string

literal (providing the string represents a float or an integer)

• str() - constructs a string from a wide variety of data types, including strings,

integer literals and float literals

Example

Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Example

Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Example

Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Python If ... Else

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

• Equals: a == b

• Not Equals: a != b

• Less than: a < b

• Less than or equal to: a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if statements" and loops.

An "if statement" is written by using the if keyword.

Example

If statement:

a = 33

b = 200

if b > a:

 print("b is greater than a")

In this example we use two variables, a and b, which are used as part of the if statement to

test whether b is greater than a. As a is 33, and b is 200, we know that 200 is greater than

33, and so we print to screen that "b is greater than a".

Indentation

Python relies on indentation (whitespace at the beginning of a line) to define scope in the

code. Other programming languages often use curly-brackets for this purpose.

Example

If statement, without indentation (will raise an error):

a = 33

b = 200

if b > a:

print("b is greater than a") # you will get an error

Elif

The elif keyword is pythons way of saying "if the previous conditions were not true, then

try this condition".

Example
a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

Else

The else keyword catches anything which isn't caught by the preceding conditions.

Example
a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

Short Hand If

If you have only one statement to execute, you can put it on the same line as the if

statement.

Example

One line if statement:

if a > b: print("a is greater than b")

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you can put it all on

the same line:

Example

One line if else statement:

a = 2

b = 330

print("A") if a > b else print("B")

This technique is known as Ternary Operators, or Conditional Expressions.

You can also have multiple else statements on the same line:

Example

One line if else statement, with 3 conditions:

a = 330

b = 330

print("A") if a > b else print("=") if a == b else print("B")

And

The and keyword is a logical operator, and is used to combine conditional statements:

Example

Test if a is greater than b, AND if c is greater than a:

a = 200

b = 33

c = 500

if a > b and c > a:

 print("Both conditions are True")

Or

The or keyword is a logical operator, and is used to combine conditional statements:

Example

Test if a is greater than b, OR if a is greater than c:

a = 200

b = 33

c = 500

if a > b or a > c:

 print("At least one of the conditions is True")

Nested If

You can have if statements inside if statements, this is called nested if statements.

Example
x = 41

if x > 10:

 print("Above ten,")

 if x > 20:

 print("and also above 20!")

 else:

 print("but not above 20.")

The pass Statement

if statements cannot be empty, but if you for some reason have an if statement with no

content, put in the pass statement to avoid getting an error.

Example
a = 33

b = 200

if b > a:

 pass

BOOL FUCTION

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give you True or False in return,

Example

Evaluate a string and a number:

print(bool("Hello"))

print(bool(15))

Example

Evaluate two variables:

x = "Hello"

y = 15

print(bool(x))

print(bool(y))

Most Values are True

Almost any value is evaluated to True if it has some sort of content.

Any string is True, except empty strings.

Any number is True, except 0.

Any list, tuple, set, and dictionary are True, except empty ones.

Some Values are False

In fact, there are not many values that evaluate to False, except empty values, such

as (), [], {}, "", the number 0, and the value None. And of course the

value False evaluates to False.

Example

The following will return False:

bool(False)

bool(None)

bool(0)

bool("")

bool(())

bool([])

bool({})

One more value, or object in this case, evaluates to False, and that is if you have an object

that is made from a class with a __len__ function that returns 0 or False:

Example
class myclass():

 def __len__(self):

 return 0

myobj = myclass()

print(bool(myobj))

Functions can Return a Boolean

You can create functions that returns a Boolean Value:

Example

Print the answer of a function:

def myFunction() :

 return True

print(myFunction())

Python While Loops

Python Loops

Python has two primitive loop commands:

• while loops

• for loops

• The while Loop
• With the while loop we can execute a set of statements as long as a condition is

true.

• Example
• Print i as long as i is less than 6:
• i = 1

while i < 6:

 print(i)

 i += 1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to define an

indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition is true:

Example

Exit the loop when i is 3:

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

The continue Statement

With the continue statement we can stop the current iteration, and continue with the next:

Example

Continue to the next iteration if i is 3:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

The else Statement

With the else statement we can run a block of code once when the condition no longer is

true:

Example

Print a message once the condition is false:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Python For Loops

Python Collections (Arrays)

There are four collection data types in the Python programming language:

• List is a collection which is ordered and changeable. Allows duplicate members.

• Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

• Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate

members.

• Dictionary is a collection which is ordered** and changeable. No duplicate
members.

Python Lists
mylist = ["apple", "banana", "cherry"]

List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3

are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered

When we say that lists are ordered, it means that the items have a defined order, and that

order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

Note: There are some list methods that will change the order, but in general: the order of

the items will not change.

Changeable

The list is changeable, meaning that we can change, add, and remove items in a list after it

has been created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value:

Example

Lists allow duplicate values:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

List Length

To determine how many items a list has, use the len() function:

Example

Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

List Items - Data Types

List items can be of any data type:

Example

String, int and boolean data types:

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

A list can contain different data types:

Example

A list with strings, integers and boolean values:

list1 = ["abc", 34, True, 40, "male"]

type()

From Python's perspective, lists are defined as objects with the data type 'list':

<class 'list'>

Example

What is the data type of a list?

mylist = ["apple", "banana", "cherry"]

print(type(mylist))

The list() Constructor

It is also possible to use the list() constructor when creating a new list.

Example

Using the list() constructor to make a List:

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets

print(thislist)

