Assignment (Unit-I)

1 Find the Value of x if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
2 Prove that, det $\left(\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right)=4 a^{2} b^{2} c^{2}$
3 Solve $\left[\begin{array}{c}y \\ 3 x\end{array}\right]=\left[\begin{array}{r}6-2 \mathrm{x} \\ 31+4 \mathrm{x}\end{array}\right]$ for x and y .
4 If $\mathbf{A}=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ Find $\mathbf{A B}$ and $\mathbf{B} \mathbf{A}$.
5 Evaluate the rank of the following matrices:
a) $\left[\begin{array}{ccc}4 & 2 & 3 \\ 8 & 4 & 6 \\ -2 & -1 & -1.5\end{array}\right]$
(b) $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 3 & 2 \\ 7 & 2 \\ 8 & 1\end{array}\right]$ (e) $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$

6 Find the value of k such that rank of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10\end{array}\right]$ is 2 .
7 Using rank method, find whether the following equations are consistent or not, $x+y+2 z=$ $4,2 x-y+3 z=9,3 x-y-z=2$. If consistent, solve them.

8 Find the values of a and b for which the system $x+2 y+3 z=6, x+3 y+5 z=9,2 x+5 y+$ $a z=b$ has (i) no solution (ii) unique solution (iii) infinite number of solutions. Also, find the solutions in case (i) and (ii).
9 Find the value of λ, for which the system $3 x-y+4 z=3, x+2 y-3 z=-2,6 x+5 y+\lambda z=-3$ will have infinite number of solutions and solve them with that λ value.
10 Determine k such that system $2 x+y+2 z=0, x+y+3 z=0,4 x+3 y+k z=0$ has Trivial Solution (II) Non-Trivial Solution
11 Find the eigenvalues and eigenvectors of the matrix
(a) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 1\end{array}\right]$
(e) $\left(\begin{array}{lll}k & k & k \\ k & k & k \\ k & k & k\end{array}\right)$, for fixed real k.

12 Verify Cayley Hamilton theorem for the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Also, find the inverse using this theorem.
13 Using Cayley Hamilton theorem find A^{-2}, where $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.

Assignment (Unit-I)

Subject Name: Mathematics-I
Subject Code: BCA-1005

14 If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$. Verify Cayley Hamilton theorem. Also, find A^{-1} and A^{4}
15 If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$ then, using Cayley Hamilton theorem, express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a linear polynomial in A.

