Logic Design Using Decoders

- \blacktriangleright An n-to- 2^n line decoder is a minterm generator.
- ightharpoonup By using or-gates in conjunction with an n-to- 2^n line decoder, realizations of Boolean functions are possible.
- ▶ Do not correspond to minimal sum-of-products.
- Are simple to produce. Particularly convenient when several functions of the same variable have to be realized.

Implementation of a Full Adder circuit using Decoder.
$$S(x_0, x_1, x_2) = \sum (1, 2, 4, 7)$$
 $C(x_0, x_1, x_2) = \sum (3, 5, 6, 7)$

	y	Z	\mathbf{C}	S
0	0	0	0	0
O	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	O	0	0	1
1	O	1	1	0
1	1	0	1	0
1	1	1	1	1

Decoders with enable inputs

- ▶ When disabled, all outputs of the decoder can either be at logic-0 or logic-1.
- ▶ Enable input provides the decoder with additional flexibility.
- ▶ Idea: if data is applied to the enable input.
- Process is known as demultiplexing.
- Now Decoder works as Demultiplexer.

If $x_0 = 0$, $x_1 = 0$ then data appears on line z_0 .

▶ Enable inputs are useful when constructing larger decoders from smaller decoders.

Larger Decoders from smaller Decoder

Applications

- ▶ In digital electronic decoder play an important role. It is used to convert the data from one form to another form.
- ▶ Generally, these are frequently used in the communication systems like telecommunication, networking, and transfer the data from one end to the other end.
- ▶ In the same way it is also used in the digital domain for easy transmission of data.
- ▶ It is also used as
 - Binary to Octal converter
 - BCD to Decimal converter
 - BCD to Seven Segment Display
- ▶ Boolean functions can be implemented using decoder.

BCD to Seven segment display

- ► The Seven segment display is most frequently used the digital display in calculators, digital counters, digital clocks, measuring instruments, etc.
- ▶ Usually, the displays like LED's as well as LCD's are used to display the characters as well as numerical numbers.
- ► These displays are frequently driven by the output phases of digital integrated circuits like decade counters as well as latches.
- ▶ However, the outputs of these are in the type of 4-bit BCD (Binary Coded Decimal), so not appropriate for directly operating the seven segment display.
- ► For that, a display decoder can be employed for converting BCD code to seven segment code.
- ▶ Generally, it has four input lines as well as seven output lines.
- ▶ The Decoder is an essential component in BCD to seven segment display.

- ▶ The circuit design, as well as operation, mainly depends on the concepts of Boolean Algebra as well as logic gates.
- ▶ The common terminals are either anode or cathode. So, it may be common cathode type or common anode type.

Truth Table

Decimal	Input lines			Output lines					Display			
Digit	A	В	U	D	a	b	C	d	е	f	g	pattern
0	0	0	0	0	1	1	1	1	1	1	0	8
1	0	0	0	1	0	1	1	0	0	0	0	8
2	0	0	1	0	1	1	0	1	1	0	1	8
3	0	0	1	1	1	1	1	1	0	0	1	В
4	0	1	0	0	0	1	1	0	0	1	1	8
5	0	1	0	1	1	0	1	1	0	1	1	8
6	0	1	1	0	1	0	1	1	1	1	1	8
7	0	1	1	1	1	1	1	0	0	0	0	8
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	1	0	1	1	8

 $a = F1 (A, B, C, D) = \sum m (0, 2, 3, 5, 6, 7, 8, 9)$ $b = F2 (A, B, C, D) = \sum m (0, 1, 2, 3, 4, 7, 8, 9)$ $c = F3 (A, B, C, D) = \sum m (0, 1, 3, 4, 5, 6, 7, 8, 9)$ $d = F4 (A, B, C, D) = \sum m (0, 2, 3, 5, 6, 8, 9)$ $e = F5 (A, B, C, D) = \sum m (0, 2, 6, 8)$ $f = F6 (A, B, C, D) = \sum m (0, 4, 5, 6, 8, 9)$ $g = F7 (A, B, C, D) = \sum m (2, 3, 4, 5, 6, 8, 9)$

К-Мар

Logic Circuit

