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Partial differential equations arise in geometry and physics when the number

of independent variables in the problem under discussion is two or more. For

instance, in the study of thermal effects in solid body the temperature

may varies from point to point in the solid as well as from time to time, and ,

as a consequence, the derivatives
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will, in general, be non zero. Furthermore in any particular problem it
may happen that higher derivatives of the types
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may be of physical significance.



When the laws of physics are applied to a problem of this kind , we some 

times obtain a relation between the derivatives of the kind
2 2
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Such an equation relating partial derivatives is called a partial differential

Equation.

Origins of First-order PDEs:
we consider the equation

( )22 2 2x y z c a+ + − = (2)

in which the constants a and c are arbitrary. The equation (2) represents the 

set of all spheres whose centers lie along the z axis.  



we differentiate this equation with respect to x and y and eliminating c we

have
0yp xq− = (3)

where   ,z zp q
x y
∂ ∂

= =
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Equation (3) is of first order. In some sense, then, the set of all spheres with 

centers on the z axis is characterized by PDE (3). However, other geometrical 

entities can be described by the same equation. For example, the equation  

2 2 2 2( ) tanx y z c α+ = −

In  which both of the constants c  and α are  arbitrary , represents the set of 

(4)



Right circular cones whose axes are coincide with the line oz.

Now what the sphere and cones have in common is that they are surfaces of

revolution which have the line oz as axes of symmetry. All surfaces of

revolution with this property are characterized by an equation of the form

( )2 2z f x y= +

where the function f is arbitrary.

(5)

Thus we see that the function z  defined by each of the equations (2), (4) and 

(5) is in some sense, a “solution”  of the equation (3).

The relations (2) and (4) are both of type 

( ), , , 0F x y a b = (6)



now differentiate this equation with respect to x and y and eliminating a and b 

we get

( ), , , 0F x y p q = (7)

The obvious generalization of the relation (5) relation between x, y and z of

the type
( ), 0F u v = (8)

where u and v are known functions of x, y and z and F is an arbitrary

function of u and v.



If we differentiate equation (8) with respect to x and y, respectively, we 

obtain  equations
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and if we eliminate F u∂ ∂ and F v∂ ∂ from these equations, we obtain
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which is a partial differential equation of type (7). 



it should be observed, however, that the  PDE (9) is linear equation whereas 

equation (7) need not be linear. For example, the equation

( ) ( )2 2 2 1x a y b z− + − + =

leads to  the first - order nonlinear  differential equation

( )2 2 21 1z p q+ + =



The general quasilinear system of n first-order PDEs in n functions of two

independent variables is

First Order Quasi Linear PDEs
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j j
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∂ ∂∑ ∑ i = (1,2,3,….) (1)

where , and may depend on x, y, If each and is

independent of the system (1) is called almost linear. If, in

addition, each depends linearly on the system is said to be

linear.

ija ijb ijc 1 2, ,.... nu u u ija ijb

1 2, ,..... nu u u

ijc 1 2, ,..... nu u u



In terms of the n x n matrices                  and                   and the column vectors

and                                 , the system (1 ) can be expressed as
ijA a =   ijB b =  

( )1 2, ,......, T
nu u u u= ( )1 2, ,......, T

nc c c c=

x yAu Bu c+ = (2)

If A or B is nonsingular, it is usually possible to classify system (2) according to 

type. Suppose                   and define a polynomial of degree n in      bydet 0B ≠ λ

( ) ( )( ) det detT T
nP A B A Bλ λ λ≡ − = − (3)

System (2) is classified as



Elliptic if has no real zeros.

Hyperbolic if has n real, distinct zeros; or if has n real zeros,

at least one of which is repeated, and the generalized eigenvalues problem

yields n linearly independent eigenvectors t .

Parabolic if has n real zeros, at least one of which is repeated, and

the above generalized eigenvalue problem yields fewer than n linearly

independent eigenvectors.

( )nP λ

( )nP λ ( )nP λ

( ) 0T TA B tλ− =

( )nP λ



Nonlinear Hyperbolic Waves

Hyperbolic waves having nonlinearity of a special type i.e., waves governed 

by quasilinear hyperbolic partial differential equations. 

The simplest example of a linear hyperbolic partial differential equation in two

independent variables x and t is

c = real constant (1)

Its solution , where is an arbitrary real

function with continuous first derivatives, represents a wave. Every point of its

profile propagates with the same constant velocity c.

0t xu cu+ = 2( , )x t R∈

( )0u u x ct= − 0 :u R R→

Consider now a nonlinear equation



0t xu uu+ =

whose solutions represent waves in which the velocity of propagation of a point
on the pulse is equal to the amplitude at that point. This equation is called
Burgers’ equation.

(2)

Consider the solution of the equation (2) satisfying the initial condition

2

( ,0) xu x e x R−= ∈ (3)

We take up here a simple geometrical construction of the successive shapes of the

initially single humped pulse given by (3). The graph of the solution at any time t

(i.e., the pulse at time t) is obtained by translating a point P on the pulse (3) by a

distance in positive x-direction, the magnitude of the translation being equal to t

times the amplitude of the pulse at the point P.



Fig. 1  As t increases, the pulse of the nonlinear wave deforms.



It has been observed in nature that a moving discontinuity appears in the quantity 

u immediately after the time    . This discontinuity at a point x = X(t) is called a 

shock.

ct

When a shock appears in the solution, it fits into the multi-valued part of the

solution in such a way that it cuts off lobes of areas on two sides of it in a certain

ratio from the graph of the solution at any time t > and makes the solution single

valued. The ratio in which the lobes on the two sides are cut off depends on a

more primitive property (conservation of an appropriate density) of the physical

phenomena represented by the equation (2) . When the primitive property is a

conservation of the density ρ(u) = u, the shock cuts off lobes of an equal area on

the two sides of it.

ct



Fig.2 The shock (shown by broken vertical line) fits into the multi-valued part of

the curve at t = 2 assuming that the shock cuts off lobes of equal areas on two sides

of it.
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