

Learning Objectives

- Clarify need for security (what are we trying to protect?)
- Identify fundamental security objectives
- Review basic network attacks
- Classify typical attackers
- Examine technical safeguards
- Explore firewall options

Internet Security Needs

- "While non-technical publications are obsessed with the Internet, technical publications are obsessed with security" Chapman & Zwick, 1995
- Information view: marvelous technological advance in information dissemination with a major danger to pollute and destroy
- Transaction view: major deterrent to E-Commerce growth

What do we Need to Protect?

- Data
 - Information we keep on computers (product design, financial records, personnel data)
 - Lost time, lost sales, lost confidence
- Resources
 - Unauthorized use of computer time & space
- Reputation
 - Misrepresentation, forgery, negative publicity

Fundamental Security Objectives

- Four fundamental objectives of Info Security
 - Confidentiality Protection from unauthorized persons
 - Integrity consistency of data; no unauthorized creation, alteration or destruction
 - Availability ensuring access to legitimate users
 - Legitimate use ensuring appropriate use by authorized users

Basic Security Attacks

- Intrusion unauthorized access and use of systems
- **Denial of service** an attack aimed at preventing use of company computers
 - email bomb or flooding/Internet worm
 - disabled, rerouted or replaced services
- Information theft network taps, database access, hacking into sites to give out more info or to wrong parties

Technical Safeguards

- Security Services
 - Authentication (entity, data origin)
 - Access control (prevent unauthorized access)
 - **Confidentiality** (disclosure, encryption)
 - **Data integrity** (value of data item)
 - Non-repudiation (falsely denying a transaction)

UNIX Password Security

Bobbie, 4238, e(Dog, 4238)

Tony, 2918, e(6%%TaeFF, 2918)

Laura, 6902, e(Shakespeare, 6902)

Mark, 1694, e(XaB#Bwcz, 1694)

Deborah, 1092, e(LordByron, 1092)

Figure 9-19. The use of salt to defeat precomputation of encrypted passwords.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security Models

- No Security not an option
- Security thru Obscurity don't tell anyone where your site is
- Host Security enforced security on each host; progressively difficult to manage as number of hosts increase
- Network Security control network access to hosts and services; firewalls, strong authentication, and encryption

Firewall Solutions

- **Definition** hardware &/or software components that restrict access between a restricted network & the Internet or between networks
- Logically a separator, restricter, analyzer
- Rarely a single object
 - Restricts people to entering at a controlled point
 - Prevents attackers from getting close to other defenses (host controls)
 - Restricts people to leaving at a controlled point

Firewall Capabilities

- Focus security decisions single point to leverage control
- Enforce security policy minimize exceptions
- Log Internet activity analysis
- Limit exposure separate sensitive areas of one network from another or outside world

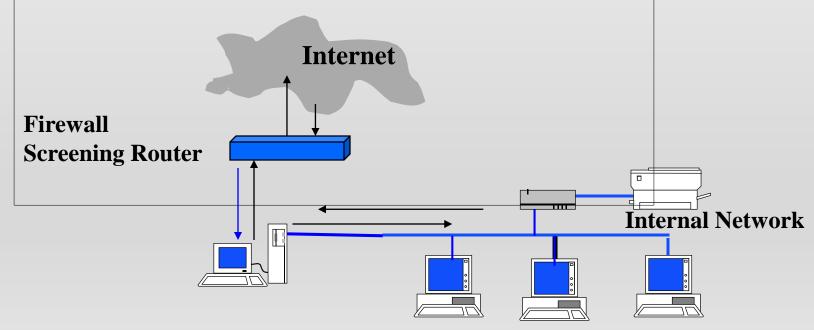
Firewall Limitations

- Can't protect against
 - malicious insiders
 - connections that don't go through it
 - new threats
 - viruses
 - scans for source & destination addresses & port numbers, not details of data

Types of Firewalls

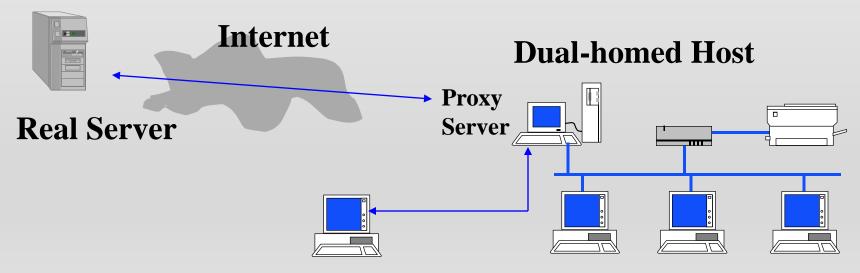
• Simple traffic logging systems

- audit log file of files accessed (HTTPD)
- site usage/demand hours/links/browsers used
- **IP Packet Screening Routers** (packet filtering gateway)
 - not only looks at 'can' it route, but 'should' it
 - selectively routes or blocks packets based on rules
 - based on protocols, destination (port 80), known source IP addresses


Types of Firewalls (cont.)

- Hardened Firewall Host (hardware)
 - Halts unauthorized users
 - Concentrates security, hides internal system names, centralizes & simplifies net management
- **Proxy Server** (software)
 - Deals with external server requests on behalf of internal clients
 - May limit certain HTTP methods (CGI or Java applets)

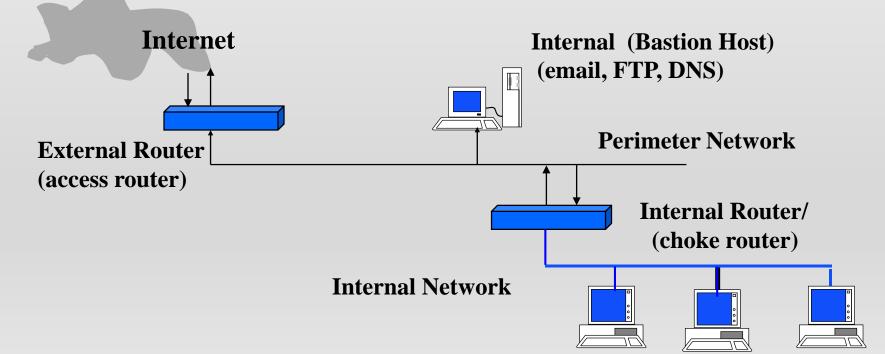
Common Solutions


Screened Host

- Host attached to internal network using separate router
- Internal host is only internal system that net hosts can connect to
- Packet filtering configuration determines if internal hosts may connect to other external hosts

Common Solutions (cont.)

- Firewall Architectures
 - **Dual-homed host** (two network interfaces)
 - One communicates externally, one internally
 - No direct communication internal to external hosts



Proxy Client/Internal Host

Common Solutions (cont.)

• Screened Sub-Net Architecture

- Extra layer of security over screened host
- Perimeter network further isolates the internal network from the Internet

Other Variations

Multiple Bastion Hosts

- Performance, redundancy, need to separate data & servers
- Usenet, SMNP/DNS, FTP/WWW

• Merge Interior & Exterior Routers

- Sufficient capability to specify inbound & outbound filters
- Usually on the perimeter network
- Merge Bastion Host & Exterior Router
- Use Multiple Exterior Routers
 - Multiple connections to Internet or Internet + other sites
- Multiple Perimeter Nets
 - Redundancy, privacy

Not Recommended

• Merging Bastion Host & Interior Router

• Breach of host leaves access to internal net

Using Multiple Interior Routers

- Routing software could decide fastest way to another internal system is via the perimeter net
- Difficult to keep multiple interior routers configured correctly
- Most important & complex set of packet filters
- May need to use multiples to resolve performance bottlenecks or separate internal networks

Futures

- Third-generation Firewalls
 - combined features of packet filtering & proxy systems
- Client & server applications with native support for proxied environments
- Dynamic packet filtering
 - Packet rules modified "on the fly" in response to triggers
- Underlying Internet protocol undergoing revisions
 IPv6

Cryptography Basics

Learning Objectives

- Identify requirements for secure communication
- Discuss cryptographic techniques
- Define cryptosystems & evaluate current encryption methods
- Review digital signature standards
- Discuss challenges of key management
- Review other security options & trust

Secure EC requirements

- For any network transaction:
 - 1. Privacy 2. Confidentiality 3. Integrity
- For reliable, secure communication:
 - 1. Authentication- we are who we say we are
 - 2. Certification guarantee by 3rd party that 'wawwswa'
 - 3. Confirmation digital receipt of transaction
 - 4. **Nonrepudiation** binding agreement, digital proof of transaction
 - 5. **Encryption** for all of the above, encoded passage of information over open networks

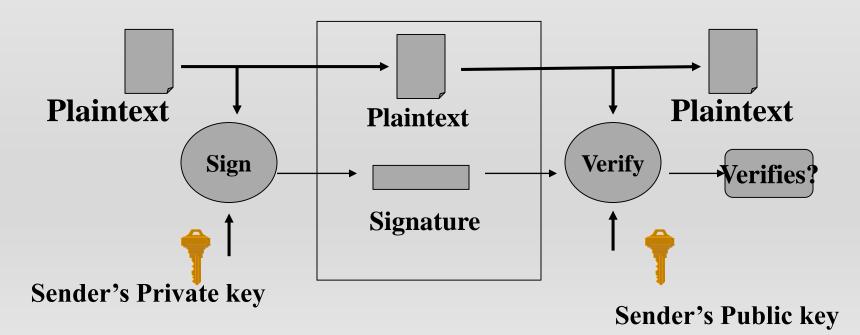
Cryptographic Techniques

- Secret writing or cryptic symbolization
- Technique encryption algorithm or cryptosystem
 - defines a pair of data transformations
 - encryption and decryption
 - encryption = plaintext to ciphertext
 - both use 'keys' seemingly random string
 - key length (number of bits) dependent upon cryptosystem

Encryption Cryptosystems

• Symmetric - private key systems (same key)

- DES Data Encryption Standard / 56-bit key
- Vulnerable to exhaustive key search (2 ⁵⁶ possibilities)
- New standard in process


Encryption Systems (cont.)

• Asymmetric - public key systems (key pair)

- 1976 Stanford development
 - encryption mode: public key to private key
 - authentication mode: private key to public key
 - cryptosystems operating both ways called reversible
- 1978 RSA reversible cryptosystem
 - based upon multiplication of two prime numbers
 - possible to crack via large computer resource
 - 1994 429-bit code cracked by scientific collaboration after 17 years
 - requires continual updating of modulus to protect
 - Jaws Tech, Inc. 4,096-bit (100 years)

Digital Signature Standards

- Accompanies a digitally encoded message
 - verifies originator of message
 - assures message not modified
 - satisfies non-repudiation requirement

Digital Key Management

- Life cycle management (cryptoperiod)
 - Generation & registration (random numbers)
 - Distribution & Availability
 - Key backup/recovery/key escrow
 - Replacement or update
 - Protection against disclosure
 - Termination or archival (confidentially archived information must be accessible after key retirement)

Other Security Methods

- Authentication Protocols built into communications protocol
 - transformed password (one-way function)
 - challenge-response (random value rec'd/sent)
 - time-stamp (synchronized clocks)
 - one-time password (different variant each login)
 - zero-knowledge technique (interactive proof)
- Address-based Authentication (network address)
- Personal Tokens (hardware & pw/ smart cards)
- Biometrics (fingerprint, voiceprint, handwriting)

Kerberos

- Complete authentication system MIT
 - DES symmetric cryptography
 - Online authentication servers
 - Host server & clients share symmetric keys
 - Client requests a 'ticket' / sends to server
 - Ticket interpreted only by correct server
 - Session key is generated by authentication server after successful exchange
 - Authentication service (AS) / Ticket-granting Service (TGS) / Client/Server (CS) authentication exchange

Internet Security

- Three levels (Network, application, system)
 - Network data packet integrity in-transit (Authentication/confidentiality/access controls)
 - IP layer/ headers + data = IP datagram
 - Not inherently secure (IP Spoofing attacks w/false source addresses)
 - Authentication headers integrity check values to indicate source & transit integrity of datagram
 - Security Association / Security Parameter Index

Internet Security (Network)

- Packet Encryption Encapsulating Security Payload (ESP) provides confidentiality + integrity
 - Algorithm (transforms)
 - Tunnel-mode encryption (entire datagram encrypted)
 - Transport-mode encryption (data only encrypted)
- Key Management no single standard
 - Host-oriented all users share same association & key
 - Potential for decrypt another's messages
 - User-oriented user has 1 or more association & keys
 - Lower risk / Superior method
- Firewalls screening routers/proxy servers, perimeter networks

Internet Security (Network)

- Virtual Private Networks (VPN)
 - Secure groups of network sites using Inet backbone
 - IP tunneling / firewalls
- Messaging special security needs above network measures
 - E-mail / mail enabled applications
 - Writer to reader protection via user agent
 - Message Transfer Agents (MTAs) = message transfer backbone (originating & delivering)

Internet Security (Messaging)

- Basic Message Protection Services
 - Message origin authentication / content integrity / content confidentiality / nonrepudiation of origin
- Enhanced Message Protection Services
 - Confirmation services (proof of delivery & submission, non-repudiation of delivery & submission)
 - Other I.e. security labeling service

Internet Security (Messaging)

- Secure Messaging Protocols
 - PEM Privacy Enhanced Mail (basic services)
 - Wraps itself around standard mail message
 - MIME Security Multi-parts
 - Multi-purpose Internet Extensions supports structuring of message body
 - Different body parts text, image, audio, etc
 - 1995 specifications:
 - Security Multi-parts for MIME
 - MIME Object Security Services (MOSS)
 - Transforms messages into standard representation for transport

Internet Security (Messaging)

- S/MIME RSA alternative to MOSS spec
 - built upon Public-Key Cryptography Stds (PKCS)
 - Protects MIME body parts, w/new data structure that becomes MIME content
 - Signed, enveloped or both
 - Mailer must be S/M compliant to read
- PGP (Pretty Good Privacy) free app using digital signatures & encryption
 - Defines own public key pair mgmt system
 - Casual e-mail, not wide-scale e-commerce

Internet Security (Messaging)

- X.400 Security
 - 1984/1988 international stds for mail gateways
 - Security features specific to X.400 protocols
 - X.400 secured mail cannot be conveyed over Inet
- Message Security Protocol (MSP)
 - US/DOS protocol similar to S/MIME, PKCS
 - Encapsulates message for basic & some enhanced services

Message Protocol Comparison

- S/MIME strongest commercial acceptance
- PGP free; not compatible w/public-key infrastructure; scalability questionable
- MSP most comprehensive feature set; not commercially widespread
- MOSS compatibility issues w/public-key; weak commercial vendor acceptance
- PEM not compatible with MIME/outdated
- X.400 most comprehensive features; not compatible with Inet messaging

Web Security

- Web Risks server content / communications
- Solutions SSL / S-HTTP / SET (evolving stds)
- SSL (Secure Sockets Layer) session protection
 - Developed by Netscape to add communication protection
 - New layer protocol operating above TCP protocol
 - Protects any application protocol normally operating over TCP (HTTP, FTP, TELNET)
 - HTTPs represents SSL communication handling
 - Services: server authentication / client authentication / integrity (check values) / confidentiality (encryption)

Web Security (SSL cont.)

- SSL has two sub-protocols
 - SSL Record Protocol defines basic format
 - Compression/MAC/encryption/data length
 - Assumes pre-existing keys
 - SSL Handshake Protocol coordination
 - Negotiates protection algorithms between client and server for authentication, transmission of key certificates, establish session keys for use in integrity check and encryption
 - Domestic (128-bit) and intern'l (40-bit)

Web Security - S-HTTP

- Secure HTTP security extension
 - Protects individual transaction request or response messages, similar to e-mail
 - Services: authentication, integrity, confidentiality + digital signatures (adds nonrepudiation)
 - Flexibility in how messages are protected and key management

Web Security Threats

- Executable Programs no foolproof defense
 - Java Applets execution occurs on client system
 - Trusted execution environment (sandbox)
 - Should not: inspect or alter client files, run system commands or load system s/w libraries
 - Should: contact only originating server
 - Potential for hostile applets to send forged e-mail, crash browsers, kill running applets, consume resources
 - Active-X reusable software components
- Source Authentication Programs -read signed code

Digital Certificates

Learning Objectives

- Differentiate digital signatures & certificates
- Define certificate authority & key methods
- Review certificate application process
- Evaluate X.500 certificate formats
- Examine certificate revocation & suspension
- Review certificate infrastructures
- Examine SET and DOD MISSI

Digital Signatures & Certificates

- Two levels of authentication
 - signatures -

certificates -

• Each requires a registration process

Certificate Authority (CA)

- Recognized & trusted party
 - Confirms identity of private key holder (subscriber)
 - Digitally signs the collection of information known as a certificate
 - Includes public key of private key holder
- 3rd Party (Open) fee-based key distribution
- Internal to org or group (Closed) self-contained key distribution & authentication

Public Key Methods

- Public key-private key distribution
 - Public key users have key to a CA
 - Requests copy of certificate & extracts public key (relying party)
- Certificate is self-protecting
 - CA's digital signature is inside the certificate
 - CA's signature would not verify if tampered with
- Certificates distributed over unsecured channels
- Downside is multiple CAs (certification path)

Certificate Issues

- Validity Period Restricted lifetimes
 - Limit cryptanalysis & vulnerability
 - Scheduled start & expire times
- Legal aspect of closed vs. open CAs
 - Open may provide better evidence
 - Similar role to that of notary
 - Utah Digital Signature Law -
 - Reliability of any digital signature depends upon reliability of a CA association of the key w/a person

Key Management

- Key pair generation & transfer
 - Key-pair holder system
 - Generated in user system where private key stored
 - Supports non-repudiation / private key never leaves
 - Central system
 - Generated in other system or CA
 - Greater resource & controls, higher quality, back-up or archive functions
- Mixed methods for types of key-pairs
 - Digital signature at key holder encryption at CA

Key Management (cont.)

- Private-key Protection / Access Control
 - Storage in tamper-resistant device (smart card)
 - Storage in encrypted file
 - Password or PIN for personal authentication
 - Software control / digital wallet
- Key-pair Update / policy
- Different Types / Different Requirements
 - RSA can perform encryption & signatures
 - Digital sig keys should be created & remain on system (ANSI X9.57); recreated as needed; no archival required
 - Encryption keys backup & archival needed

Key Management (cont.)

- Other differing requirements
 - Encryption limits (56-bit) restrict signature strength
 - Two types may have differing cryptoperiods
 - Not all algorithms have RSA dual properties
 - Private encryption keys may have to be provided to government, digital signature keys should never be

Certificate Application Process

- Registration with Certificate Authority
 - Establish relationship & provide subscriber info
 - Explicitly apply & accept certificate
- Authentication
 - Personal presence, ID documents
 - Use of intermediaries as local registration authorities
- Distribution
 - Accompanying digital signature
 - Directory Service (X.500 standards)

Certificate Distribution Protocols

- International Telecom Union (ITU) & ISO
- 1984-88 X.509 for public key distribution
- Slow acceptance due to competitive issues
- Proprietary alternatives
 - MS Exchange, Notes directory, Novell NDS, Banyan StreetTalk
- LDAP (Internet Lightweight Directory Access) access protocol rather than db technology
- S/MIME or specialized Web Servers

X.509 Certificate Format

Version 1, 2, or 3 Unique for this certificate Used by CA (DSS w/SHA hash *) **Issuing CA name Start & expiry date** Holder of private key Value of holder's public key & algorithm (RSA w/MD5 hash *) **Optional unique ID for CA Optional unique ID for holder**

* Object identifier

CA Digital Signature

Certificate Extensions

- X.509 V.3 extensions clarify owners & use
 - Key & policy information
 - Authority & Subject key ID, Key use, period, policy
 - Subject & issuer attributes
 - Alternative names (e-mail), Company, address, etc
 - Certification path constraints
 - Links to CA via root & directory infrastructures
 - Certificate revocation lists (CRL)

Revocation & Suspension

- Limited life-time (validity period)
- Suspected compromise of private key
- Name or attribute changes
- Revoked by CA, subscriber, employer
- CRL certificate revocation list (X.509)
 - Time-stamped, signed, and distributed
 - Posted to Web site or via X.500 directory
 - Real-time revocation checking (resources)

CRL Format

- Standard format for certificate revocation
 - CRL Number
 - Reason Code
 - Key compromise, CA compromise, Affiliation change, superceded, cessation of operation
 - Invalidity Date
 - Distribution Points
 - File size control entry removal, different CRL by reason, CA control
- CRL hold list for suspension

Validity Periods

- Encryption Key Pairs
 - Public key used only while certificate is valid
 - Private key for decryption part of local policy
- Digital Signature Key Pairs
 - Historic validation (non-repudiation)
 - All certificates, CRLs or status as it existed
 - Real-time (valid certificate exists now)
 - Software pub, CA sign on a public key, time stamp
- CA Signature Key Pairs
 - Both real-time & historic validation / impacts all certificates signed

Certificate of Authorization

- Proper use (i.e. purchasing authority)
 - Commit corporation, authorized official, guaranteeing authenticity (i.e. software)
 - Authorization information
 - Certificate can convey (Basic Constraints field)
 - CA certifying identity may not know / corp. security
 - Authority may change prior to validity period
- Attribute Certificates (bound to certificate subject)
 - ANSI X9 from financial industry / attribute authority
- Privilege Attribute Certificate (passed to application server & attached to session)

Certificate Infrastructures

- SDSI (Simple Distributed Security Infrastructure) -
 - 1996 Subset of X.509 functionality/omits complexity
 - Specifies local linked naming (person-company)
 - Adds simple types of authorization (group definition, delegation certificate)
- SPKI (Simple Public-Key Infrastructure)
 - Under development in IETF
 - Assigns authorizations to a public key w/o binding identity to companion private key
 - Simpler encoding scheme / closed group potential

Public Key Infrastructure

- Wide spread use requires practical methods
 - Scalability
 - Multiple Applications
 - Interoperability among Infrastructures
 - Multiple Policies & Paths
 - Simple Risk Management
 - Limitation of CA Liability
 - Standards / Structuring Conventions (Trust Models)

Infrastructure Evolution

- General Hierarchies
- Top-down Hierarchies (Privacy Enhanced Mail - PEM)
 - Internet Policy Registration Authority (IPRA)
 - Operated by MIT under Internet Society
 - Policy Certification Authorities (PCA)
 - Must register with IPRA / specialized or closed
 - Lower-Level Certificate Authorities
 - Represent organizations or departments

Evolution (cont.)

- Forest of Hierarchies
 - Trust issue of a single authority
 - International considerations
 - DOD proposing w/defense orgs of allied nations
 - Complexity increases as it grows
- PGP's Web of Trust (Each user is own CA)
 - User collects keys on a key ring and designates to what extent the key is trusted

Certificate Policies

- Progressive-Constraint Trust Model
 - Any CA specifies conditions or limitations on subject
- Certificate Policies Extension
 - X.509 V.3 adds field for conveying certificate policy references
 - User systems are preprogrammed to accept an appropriate level of policy references
 - Critical or non-critical flags (must have v. like)

Certificate Management

- Legislation
 - Spotty in US and global
 - Utah, California, Denmark, Germany, Italy
 - UN Model Law / UNCITRAL planned study
 - Technology-neutral or specific
 - Minimalist approach for flexibility
 - Validity & enforceability to electronic messages
 - Quality, Standards, & Liability

SET Infrastructure

- Visa / MasterCard joint venture
- Comprehensive protocol & infrastructure
- Public-key technology
 - Encryption of payment instructions
 - Authentication of card holders & merchants
 - Authentication of acquirers (processor banks)
 - Integrity-protection of transaction info
- Top-down hierarchy infrastructure
 - Root CA, Brand CA, Cardholder CA, Merchant CA

DOD MISSI Infrastructure

- NSA Multilevel Information Systems Security Initiative
- DOD Defense Messaging System (DMS)
 - Top-down hierarchy
 - Policy Approving Authority
 - Policy Creating Authority
 - Administrative CA
 - Organizational Registration Authority