What is Communication?

- Communication is transferring data <u>reliably</u> from one point to another
 - Data could be: voice, video, codes etc...
- It is important to receive the same information that was sent from the transmitter.
- Communication system
 - A system that allows transfer of information realiably

Block Diagram of a typical communication system

Information Source

- The source of data
 - Data could be: human voice, data storage device CD, video etc..
- Data types:
 - Discrete: Finite set of outcomes "Digital"
 - Continuous : Infinite set of outcomes "Analog"

Transmitter

- Converts the source data into a suitable form for transmission through signal processing
- Data form depends on the channel

Channel:

- The physical medium used to send the signal
- The medium where the signal propagates till arriving to the receiver
- Physical Mediums (Channels):
 - · Wired: twisted pairs, coaxial cable, fiber optics
 - Wireless: Air, vacuum and water
- Each physical channel has a certain limited range of frequencies ,($f_{min} \rightarrow f_{max}$), that is called the channel bandwidth
- Physical channels have another important limitation which is the NOISE

Channel:

- Noise is <u>undesired random</u> signal that corrupts the original signal and degrades it
- Noise sources:
 - » Electronic equipments in the communication system
 - » Thermal noise
 - » Atmospheric electromagnetic noise (Interference with another signals that are being transmitted at the same channel)
- Another Limitation of noise is the attenuation
 - Weakens the signal strength as it travels over the transmission medium
 - Attenuation increases as frequency increases
- One Last important limitation is the delay distortion
 - Mainly in the wired transmission
 - Delays the transmitted signals → Violates the reliability of the communication system

Receiver

- Extracting the message/code in the received signal
 - Example
 - Speech signal at transmitter is converted into electromagnetic waves to travel over the channel
 - Once the electromagnetic waves are received properly, the receiver converts it back to a speech form
- Information Sink
 - The final stage
 - The user

Effect of Noise On a transmitted signal

Digital Communication System

Data of a digital format "i.e binary numbers"

Information source

- Analog Data: Microphone, speech signal, image, video etc...
- Discrete (Digital) Data: keyboard, binary numbers, hex numbers, etc...
- Analog to Digital Converter (A/D)
 - Sampling:
 - Converting continuous time signal to a digital signal
 - Quantization:
 - Converting the amplitude of the analog signal to a digital value
 - Coding:
 - Assigning a binary code to each finite amplitude in the

Source encoder

- Represent the transmitted data more efficiently and remove redundant information
 - How? "write Vs. rite"
 - Speech signals frequency and human ear "20 kHz"
- Two types of encoding:
- Lossless data compression (encoding)
 - Data can be recovered without any missing information
- Lossy data compression (encoding)
 - Smaller size of data
 - Data removed in encoding can not be recovered again

Channel encoder:

 To control the noise and to detect and correct the errors that can occur in the transmitted data due the noise.

Modulator:

- Represent the data in a form to make it compatible with the channel
 - Carrier signal "high frequency signal"

Demodulator:

Removes the carrier signal and reverse the process of the Modulator

- Channel decoder:
 - Detects and corrects the errors in the signal gained from the channel
- Source decoder:
 - Decompresses the data into it's original format.
- Digital to Analog Converter:
 - Reverses the operation of the A/D
 - Needs techniques and knowledge about sampling, quantization, and coding methods.
- Information Sink
 - The User

Why should we use digital communication?

- Ease of regeneration
 - Pulses " 0, 1"
 - Easy to use repeaters
- Noise immunity
 - Better noise handling when using repeaters that repeats the original signal
 - Easy to differentiate between the values "either 0 or 1"
- Ease of Transmission
 - Less errors
 - Faster!
 - Better productivity

Why should we use digital communication?

- Ease of multiplexing
 - Transmitting several signals simultaneously
- Use of modern technology
 - Less cost!
- Ease of encryption
 - Security and privacy guarantee
 - Handles most of the encryption techniques

Disadvantage!

- The major disadvantage of digital transmission is that it requires a greater transmission bandwidth or channel bandwidth to communicate the same information in digital format as compared to analog format.
- Another disadvantage of digital transmission is that digital detection requires system synchronization, whereas analog signals generally have no such requirement.