
Lecture of Module 1

Introduction

Overview

 Computer Architecture

 Commuter Organization

 Structure and Function

 Functional units

 Basic Operational Concept

 Registers

 Bus Interconnection

 Bus Structure

 Harvard Architecture

 Von Neumann Architecture

 IAS Architecture

What is a Computer?

A computer is an Electronic device that can be programmed to process
information, date etc. to yield meaningful results.

Computer Architecture

Computer Organization

•The operational
units and their
interconnections
that realize the
architectural
specifications

•Hardware details
transparent to the
programmer, control
signals, interfaces
between the
computer and
peripherals, memory
technology used

•Instruction set,
number of bits used
to represent various
data types, I/O
mechanisms,
techniques for
addressing memory

•Attributes of a
system visible to
the programmer

•Have a direct
impact on the
logical execution
of a program Computer

Architecture

Architectural
attributes
include:

Computer
Organization

Organizational
attributes
include:

•The frequency of use of
the multiply instruction

•The relative speed of the
two approaches

•The cost and size of the
special multiply unit

•Whether to have a special
multiply circuit? Or

•To have a method that
makes repeated use of
the add unit?

• Whether a
computer
system can
execute
multiply
instructions?

Architectural
Issue

Organization
al Issue

Organizational
decision

depends on:

Architectural
Issue

Structure and Function

 Structure

 The way in which
components relate to
each other

 Function

 The operation of
individual components
as part of the structure

Input
Device

 Hierarchical system

 Set of interrelated subsystems

 Hierarchical nature of complex

systems is essential to both their design

and their description

 Designer need only deal with a

particular level of the system at a time

 Concerned with structure and

function at each level

 Structure

 The way in which

components relate to each

other

 Function

 The operation of individual

components as part of the

structure

Function

 There are four basic functions that a computer can perform:

 Data processing

 Data may take a wide variety of forms and the range of processing requirements is broad

 Data storage

 Short-term

 Long-term

 Data movement

 Input-output (I/O) - when data are received from or delivered to a device (peripheral) that is
directly connected to the computer

 Data communications – when data are moved over longer distances, to or from a remote device

 Control

 A control unit manages the computer’s resources and cares the performance of its functional
parts in response to instructions

Structure

Figure 1.1 A Top-Down View of a Computer

Main

memory
I/O

CPU

COMPUTER

System

Bus

ALURegisters

Control

Unit

CPU

Internal

Bus

Control Unit

Registers and

Decoders

CONTROL

UNIT

Sequencing

Logic

Control

Memory

There are four main

structural functional

units of the computer:

 CPU – controls the operation of the

computer and performs its data

processing functions

Main Memory – stores data

 I/O – moves data between the computer

and its external environment

 System Interconnection – some

mechanism that provides for

communication among CPU, main

memory, and I/O

CPU

Major structural

components:

 Control Unit

 Controls the operation of the CPU and hence the

computer

 Arithmetic and Logic Unit (ALU)

 Performs the computer’s data processing function

 Registers

 Provide storage internal to the CPU

 CPU Interconnection

 Some mechanism that provides for communication

among the control unit, ALU, and registers

Basic Operational Concept

Main Memory

MAR
MBR

PC

IR

Control

Unit

ALU

Registers

R0

R1

.

.

.

Rn-1
IP

Registers

•Contains a word to be stored in memory or sent to
the I/O unit

•Or is used to receive a word from memory or from
the I/O unit

Memory buffer
register (MBR)

• Specifies the address in memory of the word
to be written from or read into the MBR

Memory address
register (MAR)

• Contains the current opcode of the
instruction being executed

Instruction register
(IR)

• Holds the address of the current instruction
on which processing is going on

Instruction Pointer
(IP)

• Contains the address of the next instruction
to be fetched from memory

Program counter
(PC)

• Arrays of registers present in the processor
General Purpose
Registers (GPR)

Other Registers

 Stack Pointer (SP): It is a memory pointer. It points to a memory location called

STACK. The beginning of the Stack is defined by loading the starting address to

the Stack pointer.

 Base Register: It stores the base address of the memory. Any address of any data

is calculated logically after finding the address which is in the base register

 Temporary Register (TR): Holds temporary data during processing.

 Flag Register(FR): Shows the status of the system during processing. It is

affected by ALU operations. It consists of different Flag bits.

OF DF IF TF SF ZF AC PF CF

Flag Register

 CF: If there is a carry then flag bit is set, otherwise reset.

 PF: If even numbers 1’s in the result then flag is set, otherwise reset.

 AC: If carry is generated from D3 during operation and passes to D4 then set, otherwise reset.

 ZF: If the result is zero then flag is set, otherwise reset.

 SF: If D7 is 1 then flag is set, otherwise reset (Signed number).

 TF: Trap is a non-maskable interrupt. When non-maskable interrupt is generated then flag is set.

 IF: If any interrupt is generated then flag is set.

 DF: When memory is accessed from lower location to higher location the flag is set. When
memory is accessed from higher location to lower location the flag is reset.

 OF: When any overflow takes place during arithmetic or logical operations in Register, Stack,
Queue, Array etc. then flag is set showing the overflow condition of the current operation.

Bus Interconnection

 If a computer is to achieve a reasonable speed of operation, it must be organized so
that all units can handle one full word of data at a given time.

 When a word of data is transferred between units, all its bits are transmitted in
parallel.

 This requires a considerable number of wires (lines) to establish the necessary
connections.

 BUS: A collection of wires that connects several devices to carry the information to
or from different units of the system is called as BUS.

Three types Bus

▪ Data Bus

▪ Address Bus

▪ Control Bus

The interconnection structure must support

the following types of transfers:

Memory
to

processor

Processor
reads an

instruction or
a unit of data
from memory

Processor
to

memory

Processor
writes a unit
of data to
memory

I/O to
processor

Processor
reads data
from an I/O

device via an
I/O module

Processor
to I/O

Processor
sends data to

the I/O
device

I/O to or
from

memory

An I/O
module is
allowed to
exchange

data directly
with memory
without going
through the
processor

using direct
memory
access

A communication
pathway connecting
two or more devices

• Key characteristic is
that it is a shared
transmission medium

Signals transmitted by any one
device are available for reception by
all other devices attached to the bus

• If two devices transmit during the
same time period their signals will
overlap and become garbled

Typically consists of
multiple communication
lines

• Each line is capable of
transmitting signals
representing binary 1
and binary 0

Computer systems
contain a number of
different buses that
provide pathways
between components at
various levels of the
computer system
hierarchy

System bus

• A bus that connects
major computer
components
(processor, memory,
I/O)

The most common
computer
interconnection
structures are based on
the use of one or more
system buses

Bus

Interconnection

Data Bus

 Data lines that provide a path for moving data among system modules

 Number of wires depends on type of data transfer and word length

 May consist of 32, 64, 128, or more separate lines for parallel communication

 One line is required for serial communication

 The number of lines is referred to as the width of the data bus

 The number of lines determines how many bits can be transferred at a time (word

length)

 The width of the data bus is a key factor in

determining overall system performance

 Direction is Bidirectional

Address Bus

 Used to designate the source or destination of the data

 If the processor wishes to read or write a word of data

from or to memory it puts the address of the desired

word on the address lines

 Width determines the maximum possible memory capacity

of the system

 Also used to address I/O ports

 Used to select a I/O port

 Direction is unidirectional

Control Bus

 All the functions of the system must be synchronized and controlled

 This is the function of control unit which provides control signals through buses

 Used to control the access and the use of the data and address lines

 Because the data and address lines are shared by all components there must be a means
of controlling their use

 Control signals transmit both command and timing information among system modules

 Timing signals indicate the validity of data and address information

 Command signals specify operations to be performed

 Each line of the bus indicates a particular control signal

 A particular control line may be unidirectional or bidirectional but collectively as a bus
no concept of direction

Bus Structure

 According to the connection mechanism of different functional units the Bus structures are of two types

Single Bus structure

Multi-Bus structure

Single Bus structure:

 All units are connected to single I/O bus

 At any given time two units can actively use the bus

 Bus control is used to arbitrate multiple requests for use of bus

 Flexibility for attaching peripheral devices

 Low hardware complexity

 Low cost

 But, slower data transfer

Single Bus structure

Multi Bus structure:

 It is a simplest Multi bus (two bus) computer

 The processor interacts with memory through memory bus

 Input and output functions are handled over an I/O bus

 Data passes to memory for processing through the processor

 I/O transfers are usually under direct control of the processor

 Processor initiates the transfer and monitors their progress until completion

 In this architecture the processor sit ideally after initiating the I/O
operations till completion

 Wastage of CPU time which degrades the performance

 So, another multi bus architecture has been developed to enhance the
performance of the system

 It is another Multi bus (two bus) architecture

 Here, the position of memory and processor interchanged

 I/O transfers are performed directly to or from memory

 But, memory can not control the I/O transfer

 So, a control circuitry as part of the I/O equipment is necessary

 That control circuitry is a special purpose processor called as Peripheral Processor or
Secondary Processor or I/O Channel which controls the I/O transfer

 The main processor initiates I/O transfer by passing required information to the I/O channel

 The I/O channel then takes over and controls the actual transfer of data

 During I/O operations now the main processor is free and it can perform other CPU
operations

 So, the performance enhanced

Design of practical Computer

Two proposed architectural design

Harvard Architecture

Von Neumann Architecture

Harvard Architecture

 Separate data and instruction memories

Control

ALU

Instruction

memory

Data

memory

I/O devices

CPU

PC
Data memory

Instruction memory

address

data

address

data

Von Neumann Architecture

 Contemporary computer designs are based on concepts developed by John Von

Neumann at the Institute for Advanced Studies, Princeton

 Referred to as the Von Neumann Architecture and is based on three key concepts:

 Stored Program Architecture: Data and instructions are stored in a single read-

write memory

 The contents of this memory are addressable by location, without regard to the

type of data contained there

 Execution occurs in a sequential fashion (unless explicitly modified) from one

instruction to the next

 Example is IAS Computer developed by John Von Neumann and group at the

Institute for Advanced Studies, Princeton

Control

ALU

Memory I/O devices

Memory
CPU

PC

Address

Data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

IAS Computer

 IAS computer

 Fundamental design approach was the stored program concept

Attributed to the mathematician John von Neumann

First publication of the idea was in 1945

 Design began at the Institute for Advanced Studies, Princeton

 Completed in 1952

 Prototype of all subsequent general-purpose computers

IAS Instruction format

Registers

• Contains a word to be stored in memory or sent to the I/O
unit

• Or is used to receive a word from memory or from the I/O unit

Memory buffer register
(MBR)

• Specifies the address in memory of the word to be written
from or read into the MBR

Memory address
register (MAR)

• Contains the 8-bit opcode instruction being executedInstruction register (IR)

• Employed to temporarily hold temporarily the right-hand
instruction from a word in memory

Instruction buffer
register (IBR)

• Contains the address of the next instruction pair to be
fetched from memoryProgram counter (PC)

• Hold operands and results of ALU operations. The most
significant 40 bits are stored in the AC and the least
significant in the MQ

Accumulator (AC) and
multiplier quotient (MQ)

IAS Instruction Set

Instruction Type Opcode
Symbolic

Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to

MQ

00100001 STOR M(X) Transfer contents of accumulator to memory

location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the

accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional

branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional branch

00001111 JUMP+ M(X,0:19) If number in the accumulator is nonnegative,

take next instruction from left half of M(X)

0
0

0

1

0
0

0

0

JU
MP

+

M(X

,20:
39)

If number in the
accumulator is nonnegative,

take next instruction from

right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder

in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant
bits of result in AC, put least significant bits

in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC

00010100 LSH Multiply accumulator by 2; i.e., shift left one

bit position

00010101 RSH Divide accumulator by 2; i.e., shift right one

position

Address modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
rightmost bits of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12

rightmost bits of AC

Motherboard with Two Intel Quad-Core Xeon Processors

Computer Arithmetic

Overview

 Arithmetic Operations

 Binary Arithmetic

 Signed Binary Numbers

 Decimal Arithmetic operation

 Floating point representation

 Floating point Arithmetic

 General Multiplication

 Booth Multiplication

 Array Multiplier

 Division

Arithmetic & Logic Unit (ALU)

 Part of the computer that actually performs arithmetic and logical operations on data

 All of the other elements of the computer system are there mainly to bring data into the ALU

for it to process and then to take the results back out

 Based on the use of simple digital logic devices that can store binary digits and perform

simple Boolean logic operations

Arithmetic Operations

Addition

 Follow same rules as in decimal addition, with
the difference that when sum is 2 indicates a
carry (not a 10)

 Learn new carry rules

 0+0 = sum 0 carry 0

 0+1 = 1+0 = sum 1carry 0

 1+1 = sum 0 carry1

 1+1+1 = sum 1carry1

Carry 1 1 1 1 1 0

Augend 0 0 1 0 0 1

Addend 0 1 1 1 1 1

Result 1 0 1 0 0 0

1 1 1

0 1 0 1

+ 1 0 1 1

1 0 0 0 0

Carry Values

Subtraction
 Learn new borrow rules

 0-0 = 1-1 = 0 borrow 0

 1-0 = 1 borrow 0

 0-1 = 1 borrow 1

The rules of the decimal base applies to binary

as well. To be able to calculate 0-1, we have to

“borrow one” from the next left digit.

1 2

0 2 0 2

1 0 1 0

- 0 1 1 1

0 0 1 1

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

1’s Complement Method

Example: 1010100 – 1000100

1’s complement of 1000100 is 0111011

1 0 1 0 1 0 0

+ 0 1 1 1 0 1 1

1 0 0 0 1 1 1 1

+1

0 0 1 0 0 0 0If Carry, result is positive.

Add carry to the partial result

Example: 1000100 – 1010100

1’s complement of 1010100 is 0101011

1 0 0 0 1 0 0

+ 0 1 0 1 0 1 1

1 1 0 1 1 1 1

= – 0 0 1 0 0 0 0

If no Carry, result is negative.

Magnitude is 1’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

2’s Complement Method

If Carry, result is positive.

Discard the carry

If no Carry, result is negative.

Magnitude is 2’s complement of the result

Example: 1010100 – 1000100

2’s complement of 1000100 is 0111100

Example: 1000100 – 1010100

2’s complement of 1010100 is 0101100

1 0 1 0 1 0 0

+ 0 1 1 1 1 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

+ 0 1 0 1 1 0 0

1 1 1 0 0 0 0

= – 0 0 1 0 0 0 0

Signed Binary Numbers

 When a signed binary number is positive

• The MSB is ‘0’ which is the sign bit and rest bits represents the magnitude

 When a signed binary number is negative

• The MSB is ‘1’ which is the sign bit and rest of the bits may be represented

by three different ways

❖ Signed magnitude representation

❖ Signed 1’s complement representation

❖ Signed 2’s complement representation

Signed Binary Numbers

- 9 + 9

Signed magnitude representation 1 1001 0 1001

Signed 1’s complement representation 1 0110 0 1001

Signed 2’s complement representation 1 0111 0 1001

- 0 + 0

Signed magnitude representation 1 0000 0 0000

Signed 1’s complement representation 1 1111 0 0000

Signed 2’s complement representation -None- 0 0000

Range of Binary Number

Binary Number of n bits

 General binary number: ()

 Signed magnitude binary number: – () to + ()

 Signed 1’s complement binary number: – () to + ()

 Signed 2’s complement binary number: – () to + ()

Signed Binary Number Arithmetic

 Add or Subtract two signed binary number including its sign bit either signed 1’s

complement method or signed 2’s complement method

 The 1’s complement and 2’s complement rules of general binary number is applicable

to this

• It is important to decide how many bits we will use to represent the number

• Example: Representing +5 and -5 on 8 bits:

– +5: 00000101

– -5: 10000101

• So, the very first step we have to decide on the number of bits to represent number

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

9’s Complement Method
Example: 72532 – 3250

9’s complement of 03250 is

9 9 9 9 9 – 0 3 2 5 0 = 9 6 7 4 9

7 2 5 3 2

+ 9 6 7 4 9

1 6 9 2 8 1

+1

6 9 2 8 2If Carry, result is positive.

Add carry to the partial result

Example: 3250 – 72532

9’s complement of 72532 is

9 9 9 9 9 – 7 2 5 3 2 = 2 7 4 6 7

0 3 2 5 0

+ 2 7 4 6 7

3 0 7 1 7

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 9’s complement of the result

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

10’s Complement Method
Example: 72532 – 3250

10’s complement of 03250 is

1 0 0 0 0 0 – 0 3 2 5 0 = 9 6 7 5 0

7 2 5 3 2

+ 9 6 7 5 0

1 6 9 2 8 2

Result is 6 9 2 8 2

If Carry, result is positive.

Discard the carry

Example: 3250 – 72532

10’s complement of 72532 is

1 0 0 0 0 0 – 7 2 5 3 2 = 2 7 4 6 8

0 3 2 5 0

+ 2 7 4 6 8

3 0 7 1 8

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 10’s complement of the result

BCD Addition Rules

Comparing Binary and BCD Sums

 In the previous table Decimal sum from 0 to 9, the Binary sum same as BCD sum. So, no

conversion is needed.

 Apply correction if the Decimal sum is between 10-19.

❖ The correction is needed (Decimal sum 16-19)when the binary sum has an output carry

K = 1

❖ The correction is needed (Decimal sum 10-15)when Z8 = 1 and either Z4 = 1 or Z2 = 1.

 So, the condition for a correction and an output carry can be expressed by the Boolean

function:

C = K + Z8Z4 + Z8Z2

 When C = 1, it is necessary to add 0110 to the binary sum to get BCD sum and provide an

output carry for the next stage.

BCD Adder

Cascading of BCD Adders

BCD Subtraction Rules

Let two BCD numbers are A and B.

B to be subtracted from A.

RULES:

• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around carry

must be added

• If carry is not generated at most significant position

then the result is negative and the result is 9’s

complement of original result

Example

9’s Complement Circuit

• 9’complement of 2 is 7

• Binary equivalent of 2 is 0010

• 1’s complement of 0010 is 1101

• Then, 1101

+ 1010

= 0111 which is Binary equivalent of 7

• If carry discard it.

• 9’complement of 3 is 6

• Binary equivalent of 3 is 0011

• 1’s complement of 0011 is 1100

• Then, 1100

+ 1010

= 0110 which is Binary equivalent of 6

• If carry discard it.

BCD Subtractor Circuit

RULES:
• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around

carry must be added

• If carry is not generated at most significant

position then the result is negative and the result

is 9’s complement of original result

Floating Point Number

 Floating point number can be represented as

m × r e

 m is mantissa, e is exponent and r is radix

 Let the decimal number is 6132.789, which can be represented as

0.6132789 × 104

 Let the binary number is 1001.110, which can be represented as

0.1001110 × 24 or can be represented as 1.001110 × 23

Floating Point Arithmetic

 Addition/Subtraction

• Align the radix point first to make the exponent equal before addition or
subtraction

• Add or Subtract mantissa

• Normalize the result by adjusting the exponent

• (A × E n) ± (B × E n) = (A ± B) E n

 Multiplication

• (A × E m) × (B × E n) = (A × B) E m + n

 Division

• (A × E m) ÷ (B × E n) = (A ÷ B) E m - n

Addition (Decimal FP)

• Consider a 4-digit decimal example

– 9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points

– Adjust exponent

– 9.999 × 101 + 0.016 × 101

• 2. Add mantissa

– 9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow

– 1.0015 × 102

• 4. Round and renormalize if necessary

– 1.002 × 102

Addition (Binary FP)

• Now consider a 4-digit binary example

– 1.0002 × 2–1 + – 1.1102 × 2–2 (0.5 + – 0.4375)

• 1. Align binary points

– Adjust exponent

– 1.0002 × 2–1 + – 0.1112 × 2–1

• 2. Add mantissa

– 1.0002 × 2–1 + – 0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow

– 1.0002 × 2–4

• 4. Round and renormalize if necessary

– 1.0002 × 2–4 (no change) = 0.0625

Multiplication (Decimal FP)

• Consider a 4-digit decimal example

– 1.110 × 1010 × 9.200 × 10–5

• 1. Add exponents

– For biased exponents, subtract bias from sum

– New exponent = 10 + –5 = 5

• 2. Multiply mantissa

– 1.110 × 9.200 = 10.212 10.212 × 105

• 3. Normalize result & check for over/underflow

– 1.0212 × 106

• 4. Round and renormalize if necessary

– 1.021 × 106

• 5. Determine sign of result from signs of operands

– +1.021 × 106

Multiplication (Binary FP)

• Now consider a 4-digit binary example

– 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

• 1. Add exponents

– Unbiased: –1 + –2 = –3

– Biased: (–1 + –2 + 127) = –3 + 127

• 2. Multiply mantissa

– 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

• 3. Normalize result & check for over/underflow

– 1.1102 × 2–3

• 4. Round and renormalize if necessary

– 1.1102 × 2–3 (no change)

• 5. Determine sign: + ve × – ve = –ve

– –1.1102 × 2–3 = –0.21875

Floating Point Standard

• The IEEE Standard for Floating-Point (IEEE 754) is a technical

standard for floating-point representation which was defined in 1985

by the Institute of Electrical and Electronics Engineers (IEEE).

• Developed in response to divergence of representations

– Portability issues for scientific code

• Now almost universally adopted

• Two representations

– Single precision (32-bit)

– Double precision (64-bit)

64

11 52

Double

• Normalize significand: 1.0 ≤ |significand| < 2.0

– Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

– Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias

– Ensures exponent is unsigned

– Single precision: Bias = 127

– Double precision: Bias = 1023

 In the CPU, a 32-bit floating point number is represented using IEEE single

precision standard format as follows:

 S | EXPONENT | MANTISSA

 where S is one bit, the EXPONENT is 8 bits, and the MANTISSA is 23

bits.

• The mantissa represents the leading significant bits in the number.

• The exponent is used to adjust the position of the binary point (like

"decimal" point)

 The mantissa is said to be normalized when it is expressed as a value

between 1 and 2. i.e., the mantissa would be in the form 1.xxxx.

 The leading integer of the binary representation is not stored. Since it is

always a 1, it can be easily restored

 The "S" bit is used as a sign bit and indicates whether the value represented

is positive or negative

 0 for positive, 1 for negative

 If a number is smaller than 1, normalizing the mantissa will produce a

negative exponent

 But 127 is added to all exponents in the floating point representation,

allowing all exponents to be represented by a positive number

Single Precision

 Example 1. Represent the decimal value 2.5 in 32-bit floating point format.

2.5 = 10.1b

 In normalized form, this is: 1.01 × 21

 The mantissa: M = 01000000000000000000000

(23 bits without the leading 1)

 The exponent: E = 1 + 127 = 128 = 10000000b

 The sign: S = 0 (the value stored is positive)

 So, 2.5 = 0 10000000 01000000000000000000000

Sign Exponent Mantissa

 Example 2: Represent the number - 0.00010011b in floating point form.

 0.00010011b = 1.0011 × 2-4 in normalized form

 Mantissa: M = 00110000000000000000000

 Exponent: E = - 4 + 127 = 123 = 01111011b

 S = 1 (as the number is negative)

 Result: 1 01111011 00110000000000000000000

Sign Exponent Mantissa

Double Precision

 Example 3. Represent the decimal value 85.125 in double precision floating point
format.

 85.125 = 1010101.001

 In normalized form this will be 1. 010101001 x 26

 sign bit is 0 as positive

 For double precision biased exponent = 1023 + 6 =1029 = 10000000101

 Normalized mantissa = 010101001

 we will add 0's to complete the 52 bits

 The IEEE 754 Double precision is:

0 10000000101 010101001000

Sign Exponent Mantissa

Multiplication

Hardware Diagram

Hardware Diagram

Ms

As Qs

The sign of the product is

determined from the signs of the

Multiplicand and Multiplier.

• If they are alike, Sign of the

product is Positive.

• If they are unlike, Sign of the

product is Negative

• So, As will be equal to Ms Ex-

OR with Qs

General Multiplication

 Booth's multiplication algorithm is a multiplication algorithm that multiplies two

signed binary numbers in 2’s complement notation.

 The algorithm was invented by Andrew Donald Booth in 1950.

 It is used to speed up the performance of the multiplication process. It is very efficient too.

 If string of 0's or string of 1’s are there in the multiplier that requires no operation only shift.

 Consider a general multiplier consisting of a block of 1s surrounded by 0s. For example,

00111110. The product is given by:

M × 00111110 = M × (25 + 24 + 23 + 22 + 21) = M × 62 where, M is the multiplicand

 The number of operations can be reduced to two by rewriting the same as

M × 00111110 = M × (26 – 21) = M × 62

 This one is Booth Multiplication.

Booth Multiplication

Example

 Let the multiplication is M × +14

In signed 2’s complement representation +14 = 0 000 1110

Which is M × 0 000 1110 = M × (24 – 21) = M × (16 – 2) = M × +14

 Let the multiplication is M × -14

In signed 2’s complement representation -14 = 1 111 0010

Which is M × 1 111 0010 = M × (- 24 + 22 – 21) = M × (-16 + 4 – 2) = M × - 14

Algorithm

 As in all multiplication schemes, Booth algorithm also requires examination of the

multiplier bits from LSB to MSB and shifting of the partial product.

 Prior to the shifting, the multiplicand may be added to the partial product, subtracted from

the partial product, or left unchanged according to following rules:

▪ The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

▪ The multiplicand is added to the partial product upon encountering the first 0 (provided

that there is a previous ‘1’) in a string of 0’s in the multiplier.

▪ The partial product does not change when the multiplier bit is identical to the previous

multiplier bit, that is strig of 0s or string of 1s.

Arithmetic Shift Right

 In Booth Multiplication Algorithm Shift Right is

Arithmetic shift right

Example:

 Let the number is 1001

 Shift right is 0100

 But, Arithmetic shift right is 1100

 Let the number is 0101

 Arithmetic shift right of this number is 0010

Hardware Diagram

Q0 Q0-1

Booth Multiplication Algorithm

Multiplier Design

a1 a0

× b1 b0

a1b0 a0b0

a1b1 a0b1

Array Multiplier

b3 b2 b1 b0

× a2 a1 a0
a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0

a2b3 a2b2 a2b1 a2b0
c6 c5 c4 c3 c2 c1 c0

J = Multiplicand

K = Multiplier

AND gate required = JK nos.

(K-1) nos. of J-bit Adder required

Array Multiplier

m3 m2 m1 m0

× q2 q1 q0
m3q0 m2q0 m1q0 m0q0

m3q1 m2q1 m1q1 m0q1

m3q2 m2q2 m1q2 m0q2
P6 P5 P4 P3 P2 P1 P0

