
Lecture of Module 2

Instruction Set Architecture

Overview

 Introduction

 Instruction Format

 Different types of Instruction format

 Addressing Modes

 Types of Instruction

 Instruction Cycle

Introduction

 A program is a set of instructions that specify the operations, operands and sequence of operations by

which processing has to occur.

 A computer instruction is a binary code that specifies a sequence of micro-operations.

 Instruction code together with data stored in the computer.

 The collection of different instructions that the processor can execute is referred to as the processor’s

instruction set.

 Every processor has its own specific Instruction Set.

 Each instruction must contain the information required by the processor for execution.

 The ability to store and execute instruction, the stored program concept is most important property of

general purpose computer.

 The instruction code is a group of bits that instruct the computer to perform specific operation.

Elements of Instruction

Operation code (opcode)

•Specifies the operation to
be performed. The
operation is specified by a
binary code, known as the
operation code, or
opcode

Source operand reference

•The operation may involve
one or more source
operands, that is, operands
that are inputs for the
operation

Result operand

•The operation may
produce a result

Next instruction reference

•This tells the processor
where to fetch the next
instruction after the
execution of this instruction
is complete

General Instruction Format

 General instruction format consists of two fields

• Opcode

• Operand

 The number of bits in opcode or operational code depends on the number of operations available in
the Instruction set.

 When the Opcode decoded in the Control unit, it issues Control signals to read the operand and
initiates micro-operation to perform complete operation of that instruction.

 The Operand/Address part may be the data or address of data or Register or I/O device etc.

 This also specifies where the result to be stored.

 The number of bits in operand field depends on the number of registers in that processor or address
bits required to locate memory location.

Opcode Operand/Address

Example

 Let the instruction code having 16 bits

 12 bits for Operand/Address, 3 bits for

Opcode and 1 bit for mode (I) bit

 If I = 0 Direct addressing memory

reference instruction

 If I = 1 Indirect addressing memory

reference instruction

 Opcode 111 are for Register or I/O

reference instruction

 If I = 0, it is Register reference

instruction

 If I = 1, it is I/O reference instruction

15 14 12 11 0

I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

Register operation0 1 1 1

15 12 11 0

I/O operation1 1 1 1

15 14 12 11 0

I Opcode Address

 Opcodes are represented by abbreviations called mnemonics

 Examples:

 ADD Add

 SUB Subtract

 MUL Multiply

 DIV Divide

 LOAD Load data from memory

 STOR Store data to memory

 Operands are also represented symbolically

 Each symbolic opcode has a fixed binary representation

 The programmer specifies the location of each symbolic operand

Symbol Description

AND AND memory word to AC
ADD Add memory word to AC
LDA Load AC from memory
STA Store content of AC into memory
BUN Branch unconditionally
BSA Branch and save return address
ISZ Increment and skip if zero

CLA Clear AC
CLE Clear E
CMA Complement AC
CME Complement E
CIR Circulate right AC and E
CIL Circulate left AC and E
INC Increment AC
SPA Skip next instr. if AC is positive
SNA Skip next instr. if AC is negative
SZA Skip next instr. if AC is zero
SZE Skip next instr. if E is zero
HLT Halt computer

INP Input character to AC
OUT Output character from AC
SKI Skip on input flag
SKO Skip on output flag
ION Interrupt on
IOF Interrupt off

 A computer will usually have a variety of Instruction Code format.

 It is the function of Control unit within the CPU to interpret each instruction code and provide
necessary control functions needed to process the instruction.

 The bits of instructions are divided into groups called fields.

 The most common fields found in instruction format are:

• An Operation code field (Opcode)

• Operand or Address fields

• A mode field that specifies the way the operand or effective address of the operand is determined

• Other special fields are sometimes employed under certain circumstances

 Computers may have instructions of several lengths containing varying number of address fields.

 The number of address field in the instruction format of a computer depends on the internal
organization of its registers.

Instruction Format

 Most of the computers fall into one of three types of CPU organization.

• Single Accumulator organization

• General Register organization

• STACK organization

Single Accumulator organization

ADD X AC AC + M[X]

General Register organization

ADD R1, R2, R3 R1 R2 + R3

ADD R1, R2 R1 R1 + R2

ADD R1, X R1 R1 + M[X]

STACK organization
PUSH A

PUSH B

ADD

Different types of Instruction format

 Some computers may follow one or more than one or all mentioned features in their structure.

 There are various types of Instruction format according to the number of Address fields.

• Three-address instruction

• Two-address instruction

• One-address instruction

• Zero-address instruction

Example:

Let the expression is X = (A + B) × (C + D)

Three-address instruction

ADD R1, A, B R1 M[A] + M[B]

ADD R2, C, D R2 M[C] + M[D]

MUL X, R1, R2 M[X] R1 × R2

Expression is X = (A + B) × (C + D)

Two-address instruction

MOV R1, A R1 M[A]

ADD R1, B R1 R1 + M[B]

MOV R2, C R2 M[C]

ADD R2, D R2 R2 + M[D]

MUL R1, R2 R1 R1 × R2

MOV X, R1 M[X] R1

One-address instruction

LOAD A AC M[A]

ADD B AC AC + M[B]

STOR T M[T] AC

LOAD C AC M[C]

ADD D AC AC + M[D]

MUL T AC AC × M[T]

STOR X M[X] AC

Expression is X = (A + B) × (C + D)

Zero-address instruction
PUSH A Top A
PUSH B Top B
ADD Top (A + B)
PUSH C Top C
PUSH D Top D
ADD Top (C + D)
MUL Top (A + B) × (C + D)
POP X M[X] Top

Addressing Modes

Immediate

Direct

Indirect

Register

Register indirect

Displacement

STACK

Auto Increment / Auto Decrement

Implied/Implicit • In an instruction format the way the

operands are chosen during

program execution is dependent on

the Addressing mode of the

instruction.

• Before any operand is referenced,

the addressing mode specifies the

operand or address of the operand.

• Various types of Addressing modes

are there as stated.

• A particular Instruction Set

Architecture may follow some or all

of these addressing modes to find

the effective address of the operand.

Implied/Implicit Addressing mode

 No address field required.

 The operand is specified within the instruction implicitly.

 All the instructions that uses accumulator implicitly within the instruction called implied

addressing mode.

 CLA – Clear the content of Accumulator

 CMA – Complement the content of the Accumulator

 No memory reference other than the instruction fetch.

Instruction format

Immediate Addressing Mode

 Simplest form of addressing.

 Operand = A

 The required operand is present in the instruction.

 This mode can be used to define and use constants or set initial values of variables.

 No memory reference other than the instruction fetch is required to obtain the

operand, thus saving one memory or cache cycle in the instruction cycle.

 Size of the data restricted to the size of the Operand/Address field. It may be less

than the word length, which is a drawback.

Direct Addressing Mode

 In the instruction format the address field contains the

effective address of the operand.

 Effective address (EA) = address field A

 It was common in earlier generations of computers.

 Except instruction fetching, it requires only one memory

reference for data reading.

 No special calculation necessary for effective address.

 Limitation is that it provides only a limited address space.

Indirect Addressing Mode

 In the instruction format the Operand/Address field
contains an address where the address of the data is
present.

 Effective address (EA) = [A]

 Reference to the address of a word in memory which
contains a full-length address of the operand.

 For a word length of N an address space of 2N is now
available, which resolves the limitation of Direct
addressing.

 Instruction execution requires two memory references
to fetch the operand. One to get its address and a
second to get its value.

Register Addressing Mode

 In the instruction format the Operand/Address field

specifies a register rather than a memory address

which contains the required operand.

 EA = R

 Only a small Operand/Address field is needed in the

instruction to specify a particular register.

 No memory references rather register reference to

find the required data.

 The address space is very limited

Register Indirect Addressing Mode

 In the instruction format the Operand/Address field specifies a register
which contains the address of an operand in the memory location.

 Analogous to indirect addressing

 difference is whether the address field refers to a memory location
or a register.

 Uses one less memory reference than indirect addressing.

 Instruction format may be smaller than indirect addressing.

 EA = [R]

 Address space limitation of the address field is overcome by having
that field refer to a word-length location containing an address.

 Before using a Register Indirect mode instruction, the programmer
must ensure that the memory address of the operand is placed in the
processor register with a previous instruction.

Displacement Addressing Mode

 Very powerful addressing mode

 Combines the capabilities of register indirect addressing and direct
addressing

 EA = [R] + A

 The instruction may have two address fields

 The value contained in one address field (value = A) is used directly

 The other address field refers to a register whose contents are added to
A to produce the effective address

 Most common uses are:

 Relative addressing

 Base-register addressing

 Indexed addressing

Relative Addressing Mode

 The referenced register is the Program Counter (PC).

 The next instruction address (PC) is added to the address

field A to produce the effective address (EA).

 Typically the address field is treated as a twos complement

number for this operation.

 The effective address is a displacement relative to the

address of the instruction.

 Exploits the concept of locality.

 Saves address bits in the instruction if most memory

references are relatively near to the instruction being

executed.

 Also called Limit Addressing Mode.

Base-register Addressing Mode

 In this type of addressing mode the content of the Base register

is added to the address part, that is, A of the instruction to

obtain effective address.

 The Base register contains a main memory address and the

address field contains a displacement from that address.

 Exploits the locality of memory references.

 Convenient means of implementing segmentation.

 In some implementations a single segment base register is

employed.

 In others the programmer may choose a register to hold the base

address of a segment and the instruction must reference it.

Indexed Addressing Mode

 Index Register is a special CPU register contains an Index value.

 The address field (A) references a main memory address and the

index register contains a positive displacement from that address.

 The method of calculating the EA is the same as for base-register

addressing.

 An important use is to provide an efficient mechanism for

performing iterative operations.

 Autoindexing

 Automatically increment or decrement the index register

after each reference to it

 EA = A + (XR)

 (XR) (XR) + 1

STACK Addressing Mode

 A stack is a linear array of locations.

 Items are appended to the top of the stack so that the block is partially filled.

 Associated with the Stack Pointer (SP) whose value is the address of the top of the stack.

 The stack pointer is a register

 Thus references to stack locations in memory are in fact register indirect addresses

 This is also a form of implied addressing mode.

 In this mode, operand is at the top of the stack.

 For example: ADD, this instruction will POP top two operands from the stack, add them,
and will then PUSH the result to the top of the stack.

Auto increment/Auto decrement Addressing

 It is similar to Register or Register Indirect Addressing mode.

 If it Register addressing mode then the content of the specified register is

incremented or decremented by 1.

 If it Register Indirect addressing mode then the address of the operand is

incremented or decremented by 1.

 To access consecutive location the address value is stored in the register and

then incremented or decremented

Example:

 An instruction is stored at location 200 with address field at location 201.

The address field has the value 500. A processor register R1 contains 400.

Evaluate the effective address for different addressing modes if XR value

is 100.

• Direct Addressing Mode: EA = 500, AC = 800

• Indirect Addressing Mode: EA = 800, AC = 300

• Immediate Addressing Mode: EA = 201, AC = 500

• Register Addressing Mode: EA = No, AC = 400

• Register Indirect Addressing Mode: EA = [R1] = 400, AC = 700

• Relative Addressing Mode: EA = [PC]+500 = 702, AC = 325

• Indexed Addressing Mode: EA = [XR] + 500 = 600, AC = 540

• Auto increment (Register addressing): EA = No, AC = 401

• Auto increment (Register indirect addressing): EA = 401, AC = 650

Ins

500

700

650

800

540

325

300

200

201 R1

400

500

800

702

400

100

XR

600

401

Types of Instruction

 A computer provides an extensive set of instructions to give the user flexibility to carry out various

computational tasks.

 The instruction set for different processors differ from each other mostly in the way the operands are

determined and mode field.

 The actual operations available in the instruction set are not very different from one computer to another.

 The binary code of the Opcode may differs from processor to processor, even for the same operation.

 Most computer instructions can be classified into following categories.

• Data transfer instructions

• Data manipulation instructions

▪ Arithmetic instructions

▪ Logical and bit manipulation instructions

▪ Shift instructions

• Program control instructions

Data Transfer Instructions

 Data transfer instructions move data from one place to another without changing the
data content.

 Most common transfers are between memory and processor registers, between
processor registers and I/O, and between processor registers themselves.

 LOAD, STOR, MOV, XCHG, IN, OUT, PUSH, POP etc.

Data manipulation instructions

 Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer.

▪ Arithmetic instructions

▪ Logical and bit manipulation instructions

▪ Shift instructions

Arithmetic Instructions

 Basic arithmetic operations are addition, subtraction, multiplication and division.

 Most computers provide instructions for all four operations.

 Some small computers have only addition and possibly subtraction instructions.

 The multiplication and division must then be performed by help of addition and other

instructions.

 ADD, SUB, MUL, DIV, INC, DEC, ADDC, SUBB etc.

Logical and Bit manipulation Instructions

 AND, OR, XOR, CLR, COM, CLRC, SETC, COMC etc.

Shift Instructions

 Instructions to shift the content of a register or accumulator are quite

useful.

 Shift operations may specify either logical shifts or arithmetic shifts

or rotate type operations.

 In either case the shift may be to the left or to the right.

 SHR, SHL, ASHR, ASHL, RAR, RAL, RRC, RLC etc.

Program Control instructions

 Instructions are always stored in successive memory locations.

 Instructions are fetched from memory and executed.

 Just after fetching of an instruction, the Program counter is incremented for the next

instruction in sequence.

 On the other hand, a program control type of instruction, when executed may

change the address value in the Program counter and cause the flow of control to be

altered.

 The change in value of the Program counter due to program control instruction

cause a break in sequence of instruction execution.

 BR, JUMP, JC, JNC, JZ, JNZ, JP, JN, SKP, CALL, RET etc.

 An instruction is a command given to the computer to perform specific operation on given data.

 To perform a particular task a sequence of instructions are written, called a program.

 Generally instruction and data are stored in the memory.

 The necessary steps that a CPU carries out to fetch an instruction and required data and then to
process it constitute an Instruction Cycle.

 Each Instruction cycle is subdivided into a sequence of sub cycles or phases.

 In Basic Computer, an instruction passes through following sub cycles:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the required Operand

4. Entertain the Interrupt if it is generated

5. Execute the instruction

Note: Every different processor has its own (different) instruction cycle

Instruction Cycle

Instruction Cycle

Includes the
following stages:

Fetch

Read the next
instruction from

memory into
the processor

Execute

Interpret the
opcode and
perform the
indicated
operation

Interrupt if
generated

If interrupts are enabled
and an interrupt has
occurred, save the

current process state
and service the

interrupt

Instruction Cycle Flow Diagram

= 0 (direct)

Start
SC 0

MAR PC T0

PC MBR M[MAR], PC + 1 T1

I MAR IR(0-11), IR(15)

Decode Opcode in IR(12-14),

T2

Ins?
(Memory reference)(Register or I/O reference)

II

Execute
register-reference

instruction

SC 0

Execute
input-output
instruction

SC 0

M[MAR]MBR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T4 T4 T4 T4

Execute
memory-reference

instruction

SC 0

T5

IR MBR

T3

T0: MAR PC

T1: MBR M[MAR], PC PC+1

T2: IR MBR

T3: Decode

T4, T5: Execute

Instruction Cycle State Diagram

Internal CPU

Operations

CPU Access to

Memory or I/O

Instruction Cycle State Diagram with Interrupt

CPU Organization

Overview

 Introduction

 Single Bus organization (Data Path) inside Processor

 Register Transfers

 Control Sequences

 Fetching a Word from Memory

 Storing a Word in Memory

 Control Sequences for Execution of a Complete Instruction

 Multi Bus organization (Data Path) inside Processor

 Organization of Basic Control Unit

 Hardwired Control Unit

 Microprogrammed Control Unit

 Stack Organization

 Revers Polish Notation (RPN)

 Evaluation of Arithmetic Expression using RPN

 Subroutine

Introduction

 Processor fetches one instruction at a time and perform the required operation.

 Instructions are fetched from successive memory locations until a Branch, Call or a Jump

instruction is encountered.

 Processor keeps track of the address of the memory location containing the next instruction

to be fetched using Program Counter (PC).

 After fetching from memory instruction is stored in Instruction Register (IR) for decoding.

1. Fetch the contents of the memory location pointed to by the PC.

2. Assuming that the memory is byte addressable, and each instruction comprises 4 bytes,

increment the contents of the PC by 4. PC ← [PC] + 4

3. Carry out the operations specified by the instruction.

Steps 1 and 2 constitute the fetch phase, and step 3 constitutes the execution phase.

Single Bus organization (Data Path) inside Processor

 Generally there are two sub units within the

processor, that is, Control Unit and Datapath.

 Physically there is hardly any difference

between the Control unit and Datapath.

 The hardware of both subunits are tightly

coupled in a single physical unit.

 The Datapath includes the internal path for

movement of data within the Processor

between ALU and registers and other hardware

like temporary storage, lathes, multiplexers,

demultiplexers, decoders, counters, delay

logics etc.

 Other buses are external buses that connects

memory and I/O devices.

 The ALU and all the registers are interconnected via a single common bus. This bus is internal to the

processor and should not be confused with the external bus that connects the processor to the memory and

I/O devices.

 The data and address lines of the external memory bus are connected to the internal processor bus via the

memory data register (MDR), and the memory address register (MAR), respectively.

 The input of the MAR is connected to the internal bus, and its output is connected to the external bus.

 The number and use of the processor registers R0 through R(n-1) vary from one processor to another.

 Three registers, Y, Z, and TEMP are transparent to the programmer. They are used by the processor for

temporary storage during execution of some instructions.

 The multiplexer MUX selects either the output of register Y or a constant value 4 to be provided as input

of A of the ALU. The constant 4 is used to increment the content of the program counter (PC).

 The instruction decoder and the control logic unit is responsible for implementing the actions specified by

the instruction loaded in the IR register.

Register Transfers

 Instruction execution involves a sequence of steps in which data

are transferred from one register to another.

 For each register, two control signals are used to place the

content of that register on the bus or from the bus to the register.

 The input and output of register Ri are connected to the bus via

switches controlled by the signal Riin and Riout respectively.

 When Riin = 1, the data on the bus are loaded into Ri.

 When Riout = 1, the contents of register Ri are placed on the

bus.

 While Riout = 0, the bus can be used for transferring data from

other registers.

 All the operations and data transfers within the processor take

place within time periods defined by the processor clock.

X

X

Ri in

Ri out

Ri

 The ALU is a combinational circuit

that has no internal storage.

 ALU gets the two operands from MUX

and bus. The result is temporarily

stored in register Z.

 A sequence of operations to add the

contents of register R1 to R2 and store

the result in R3 is shown below.

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Control Sequences

Fetching a Word from Memory

 To fetch a word from the memory, the

processor has to specify the address of

the memory location

 Address into MAR; issue Read

operation; data into MDR.

 It has four control signals.

 MDRin and MDRout control the

connection to the internal bus.

 MDRinE and MDRoutE control the

connection to the external bus.

 During memory Read and Write operations, the timing of internal processor operations
must be coordinated with the response of the addressed device on the memory bus.

 The processor completes one internal data transfer in one clock cycle.

 The speed of the operation of I/O devices are slower than the processor speed and also
different device speed is different from each other.

 To accommodate this, the processor waits until it receives an indication that the

requested operation has been completed.

 A control signal called Memory-Function-Complete (MFC) is used for this purpose.

 During Read or Write operation to or from memory, the other operations Wait for MFC

signal.

 WMFC is a control signal that causes processor control circuitry to wait for arrival of

MFC signal.

Example: Consider an instruction MOV R2, [R1]

 The actions needed for memory read are:

1. MAR ← [R1]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory

4. Load MDR from the memory bus

5. R2 ← MDR

 Control Sequences are:

1. R1out, MARin, Read

2. MDRinE, WMFC

3. MDRout, R2in

Storing a Word in Memory

Example: Consider an instruction Move [R1], R2

 The actions needed for memory write are:

1. MAR ← [R1]

2. MDR ← R2

3. Start a write operation on the memory bus

4. Wait for the MFC response from the memory

5. Store memory bus from MDR

 Control Sequences are:

1. R1out, MARin

2. R2out, MDRin, Write

3. MDRout E, WMFC

Execution of a Complete Instruction

Example: Consider an instruction ADD R1, [R3]

 The actions needed for execution of complete

instruction are:

1. Fetch the instruction

2. Read the operand (the contents of the memory

location pointed to by R3)

3. Perform the addition

4. Load the result into R1

Example: Consider an instruction ADD R1, [R3]

 Control Sequences are:

1. PC out, MAR in, Read, Select4, Add, Z in

2. Z out, PC in, WMFC

3. MDRin E, MDR out, IR in

4. R3 out, MAR in, Read

5. R1 out, Y in, WMFC

6. MDRin E, MDR out, SelectY, Add, Z in

7. Z out, R1 in, End

 Sequence 1, 2 and 3 for Opcode fetching and PC increment for
next instruction.

 Sequence 4 for locating memory location to read operand.

 Sequence 5 for reading operand from register.

 Sequence 6 for operand reading from memory to ALU and
arithmetic operation.

 With a single bus organization, the resulting

control sequences are quite long because only

one data item can be transferred over the bus in

a single clock cycle.

 To reduce the number steps needed, most

commercial processors provide multiple internal

paths that enable several transfers to take place

in parallel.

 All general-purpose registers are combined into

a single block called the register file.

 The register file is said to have three ports.

There are two outputs, allowing the contents of

two different registers to be accessed

simultaneously and have their contents placed

on buses A and B.

Multi Bus organization

(Data Path)inside Processor

 The third port allows the data on the bus C
to be loaded into a third register during the
same clock cycle.

 Buses A and B are used to transfer the
source operands to the A and B inputs of
the ALU.

 The result is transferred to the destination
over bus C.

 If needed, the ALU may simply pass one
of its two input operands unmodified to
bus C.

 The ALU control signals for such an
operation may be called as R = A or R = B.

 The three-bus arrangement obviates the need
for the registers Y and Z (available in the
single-bus organization).

 Another feature is the introduction of the
Incrementor unit, which is used to increment
the PC by 4.

 Using the Incrementor eliminates the need to
add 4 to the PC using the main ALU.

 The source for the constant 4 at the ALU
input multiplexer is still useful. It can be
used to increment other addresses, such as
the memory addresses in LoadMultiple and
StoreMultiple instruction.

 Add R6, R5, R4

Step Action

1 PCout, R=B, MARin, Read, IncPC

2 WMFC

3 MDRinE, MDRoutB, R=B, IRin

4 R4outA, R5outB, SelectA, Add, R6in, End

Control sequence for the instruction for the three-bus organization

Control Unit

 All the operations in a computer system must be

coordinated in some synchronized way, which is the task of

control unit.

 This unit effectively the nerve center of the system.

 In concept it is reasonable to think of a control unit as a well

defined physically separate unit that interacts with other

parts of the system but, in practice much of the control

circuitry is physically distributed throughout the machine.

Organization of basic Control Unit

 The organization of basic control unit

of a system consists of four blocks.

• Instruction Decoding block

• Timing Signal Generating block

• Computer Cycle Control block

• Control Logic

Instruction Decoding block

 It consists of an Instruction register

and Instruction decoder.

 It decodes the instruction and

provides necessary information to the

Control Logic.

Instruction Register

Instruction Decoder

Decoder Decoder

Start/

Stop FF
Sequence

Counter
F-FF R-FF

Control

Logic

Other

Conditions

Control Function

Instruction

Decoding block

Timing Signal Generating block Computer Cycle Control block

Timing Signal Generating block

 It is essentially consists of a Sequence Counter and a Start/Stop flip flop.

 Start/Stop flip flop is used to enable the decoder.

 The Decoder provides necessary timing signals to the Control Logic.

Computer Cycle Control block

 This block consists of two flip flops F and R and a Decoder.

 The computer cycle is determined by this circuit depending on the following Truth Table.

F R Cycle

0 0 Fetch Cycle

0 1 Operand Cycle

1 0 Execute Cycle

1 1 Interrupt Cycle

Control Logic

 It is a complex circuit which receives inputs from Instruction decoding block, Timing signal
generating block and Computer cycle control block.

 It also takes some control conditions from outside and generates appropriate Control Function
or Control word (CW).

 After decoding the instructions the Control unit must have some means of generating control
signals needed to complete the operations.

 The computers are designed by implementing a wide variety of technologies to perform this.

 Most of these technologies, however, fall into two categories.

• Hardwired Control

• Microprogrammed Control

Hardwired Control Unit

 Each step in sequence is completed in one clock
period.

 A counter may be used to keep track of the control
steps.

 Each state, or count, of this counter corresponds to
one control step.

 The required control signals are determined by the
following information.

▪ Contents of the instruction register and decoder

▪ Contents of the condition code flags

▪ External input signals, such as MFC and interrupt
requests

▪ Signals from Step decoder

 The step decoder provides a separate signal line for each step, or time slot, in the control sequence.

 Similarly, the output of the instruction decoder consists of a separate line for each machine
instruction.

 For any instruction loaded in the IR, one of the output lines INS1 through INSm is set to 1, and all
other lines are set to 0.

 The input signals to the encoder block are combined to generate the individual control signals like
Yin, PCout, Add, End, and so on.

 The control hardware can be viewed as a state machine that changes from one state to another in
every clock cycle, depending on the contents of the instruction register, the condition codes, and the
external inputs.

 The outputs of the state machine are the control signals from which all or some of the lines are
activated.

 The sequence of operations carried out by this machine is determined by the wiring of the logic
elements, hence the name “hardwired”.

Advantages

 A hardwired control unit works fast.

 The combinational circuits generate the control signal based on the input signals
status. The delay between the output generation to the input availability depends on
the number of gates in the path and propagation delay of each gate in the path.

Disadvantages

 If the CPU has a large number of control points, the control unit design becomes
very complex.

 The design does not give any flexibility.

 If any modification instruction set is required, it is extremely difficult to make the
correction.

Microprogrammed Control Unit

 Microprogramming is a method of Control unit

design in which the control signal selection and

sequencing information is stored in ROM or

RAM, called Control Memory (CM).

 The control signal to be activated at any time are

specified by a microinstruction which is fetched

from the Control memory.

 Each microinstruction also provides necessary

information for microoperation sequencing.

 A set of microinstructions forms Microprogram.

 Microprogram can be changed relatively easily by

changing the contents of Control Memory (CM).

 So, Microprogrammed control unit is more

flexible than the Hardwired control unit.

Control
Memory

Clock

generator

Starting
and

branch address Condition
codes

inputs
External

CW

IR

mPC

 The instruction is loaded to the Instruction Register (IR).

 The address field of the microinstruction contains the next address and that to be used when branching

condition is satisfied.

 The Microprogram Counter (µPC) provides the next microinstruction address when no branching is

needed.

 The starting address or branch address is generated by taking condition code, external inputs and CW

into consideration.

 By decoding the microinstruction appropriate control signals, that is, Control Word (CW) is generated.

 Generally the control memory is ROM, it can not be modified.

 For flexibility now writeable control memory (WCM) is used.

 So, a processor with writeable control memory (WCM) in the control unit is said to be dynamically

micro-programmable because the control memory content can be altered.

Advantages

 Less design complexity

 Flexible due to WCM

 A given CPU instruction set can be easily modified by

changing the microprogram.

Disadvantages

 A microprogram control unit works slow than

Hardwired control unit.

Microprogram

❑ Program stored in control memory that generates all the control signals required to execute the instruction

set correctly

❑ Consists of microinstructions

Microinstruction

❑ Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle

Sequencing Word - Information needed to decide the next microinstruction address

Control Memory (Control Storage: CS)

Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory (Writeable Control Storage: WCS)

❑ CS whose contents can be modified

Allows the microprogram can be changed

Instruction set can be changed or modified

Dynamic Microprogramming

❑ Computer system whose control unit is implemented with a microprogram in WCS

❑ Microprogram can be changed by a systems programmer or a user

STACK

 Stack is a contiguous memory location or collection of finite number of registers defined by the

user that stores information.

 If it is contiguous memory locations, called memory stack.

 If it is collection of finite number of registers, called register stack.

 The stack is a reserved area of the memory where we can store temporary information.

 The item stored last into the stack will be retrieved first. So, the operation is called LIFO.

 The register that hold the address for the stack, that is, top of the stack is called Stack pointer (SP).

 The two operations of a stack are the insertion and deletion of item.

 The operation of insertion is called PUSH.

 The operation of deletion is called POP.

 These operations are simulated by incrementing or decrementing the Stack Pointer register.

 A stack may be Full stack or Empty stack.

 It may be Descending stack or Ascending stack.

D

C

B

A

SP

1

2

3

4

5

6

7

8

C

B

A

SP

1

2

3

4

5

6

7

8

A

B

C

DSP

1

2

3

4

5

6

7

8

D

C

B

A

SP

1

2

3

4

5

6

7

8

Full Stack Empty Stack Descending Stack Ascending Stack

SP ← SP-1

PUSH
PUSH

SP ← SP-1

SP ← SP -1

PUSH

SP ← SP +1

PUSH

D

C

B

A

SP

1

2

3

4

5

6

7

8

C

B

A

SP

1

2

3

4

5

6

7

8

A

B

C

SP

1

2

3

4

5

6

7

8

A

B

C

D

ESP

1

2

3

4

5

6

7

8

Full Descending Stack Empty Descending Stack Full Ascending Stack Empty Ascending Stack

SP ← SP-1

PUSH

PUSH

SP ← SP-1
SP ← SP +1

PUSH

PUSH

SP ← SP +1

Polish Notation

 The way to write arithmetic expression is known as notation.

 An arithmetic expression can be written in three different but equivalent notations, that is, without changing the
essence or output of an expression.

 These notations are −

• Infix Notation

• Prefix (Polish) Notation

• Postfix (Reverse-Polish) Notation

 Infix, Prefix and Postfix notations are three different but equivalent notations of writing algebraic expressions.

 While writing an arithmetic expression using infix notation, the operator is placed between the operands.

 For example, A+B; here, plus operator is placed between the two operands A and B.

 Although it is easy to write expressions using infix notation, computers find it difficult to parse as they need a lot
of information to evaluate the expression.

 Information is needed about operator precedence, associativity rules, and brackets which overrides these rules.

 So, computers work more efficiently with expressions written using prefix or postfix notations.

Reverse Polish Notation

 Postfix notation was given by Jan Łukasiewicz who was a Polish logician, mathematician, and

philosopher.

 His aim was to develop a parenthesis-free prefix notation (also known as Polish notation) and a postfix

notation which is known as Reverse Polish Notation or RPN.

 In postfix notation, the operator is placed after the operands. For example, if an expression is written as

A+B in infix notation, the same expression can be written as AB+ in postfix notation.

 The order of evaluation of a postfix expression is always from left to right.

 The expression (A + B) * C is written as: AB+C* in the postfix notation.

 A postfix operation does not even follow the rules of operator precedence.

 No parenthesis required.

 The operator which occurs first in the expression is operated first on the operands.

 For example, given a postfix notation AB+C*. While evaluation, addition will be performed prior to

multiplication.

 Now we need to calculate the value of the arithmetic operations by using stack.

 The procedure for getting the result is:

1. Convert the expression in Reverse Polish notation (post-fix notation).

2. Push the operands into the stack in the order they appear.

3. When any operator encounter then pop two topmost operands for executing the

operation.

4. After execution push the result into the stack.

5. After the complete execution of expression the final result remains on the top of the

stack.

Example

 Infix notation: (2+4) * (4+6)

 Post-fix notation: 2 4 + 4 6 + *

 Result: 60

 The stack operations for this expression evaluation is shown below:

Evaluation of Arithmetic Expression

Subroutine

 In programming, a subroutine is a sequence of instructions that performs a specific task,

packaged as a unit.

 This unit can then be used in programs wherever that particular task should be performed.

 Subroutines may be defined within programs, or separately in libraries that can be used

by many programs.

 In different programming languages, a subroutine may be called

a routine, subprogram, function, method, or procedure.

 So, a subroutine is a group of instructions that will be used repeatedly in different

locations of the program.

 Rather than repeat the same instructions several times, they can be grouped into a

subroutine that is called from the different locations.

100

101

205

206

Nested Subroutine

 A nested subroutine is a subroutine that is called from other subroutine.

 Stack operations can be very useful at subroutine entry and exit to avoid losing register
contents if other subroutines are called.

 At the start of a subroutine, content of PC required to be stored on the stack, and at exit
they can be popped off again.

Example

54

90

54

506

90

54

723

506

90

54

