## 3*8 BINARY DECODER

-A 3*8 decoder has three inputs (A, B, C) and eight outputs (D0 to D7).
-Based on the 3 inputs one of the eight outputs is selected.
-The truth table for 3 to 8 decoder is shown in the below table.
-From the truth table, it is seen that only one of eight outputs (D0 to D7) is selected based on three select inputs.

- From the truth table, the logic expressions for outputs can be written as follows:

- It is also called a binary-to-octal decoder since the inputs represent 3bit binary numbers and the outputs represent the eight digits in the octal number system.

| Inputs |  |  |  |  |  |  |  |  | Outputs |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | y | z | D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |  |  |  |  |  |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |  |  |  |  |



$$
\begin{array}{ll}
D_{0}=\overline{A B C}, & D_{1}=\bar{A} \overline{B C}, \\
D_{2}=\bar{A} B \bar{C}, \\
D_{3}=\bar{A} B C, & D_{4}=A \overline{B C}, \\
D_{5}=A \overline{B C}, \\
D_{6}=A B \bar{C}, & D_{7}=A B C
\end{array}
$$

Using the above expressions, the circuit of a 3 to 8 decoder can be implemented using three NOT gates and eight 3input AND gates
-The three inputs $A, B$, and $C$ are decoded into eight outputs, each output representing one of the midterms of the 3-input variables.
-The three inverters provide the complement of the inputs and each one of the wight AND gates generates one of the midterms.
-This decoder can be used for decoding any 3-bit code to provide eight outputs, corresponding to eight different combinations of the input code.
-This is also called a 1 of 8 decoder since only one of eight output lines is HIGH for a particular input combination.

## 3*8 DECODER USING TWO 2*4 DECODER

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4 Decoder has two inputs, $A_{1} \&$ $A_{0}$ and four outputs, $Y_{3}$ to $Y_{0}$. Whereas, 3 to 8 Decoder has three inputs $A_{2}, A_{1} \& A_{0}$ and eight outputs, $Y_{7}$ to $Y_{0}$.

The parallel inputs $A_{1} \& A_{0}$ are applied to each 2 to 4 decoder. The complement of input $A_{2}$ is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, $Y_{3}$ to $Y_{0}$. These are the lower four min terms. The input, $A_{2}$ is directly connected to Enable, E of upper 2 to 4 decoder in order to get the outputs, $Y_{7}$ to $Y_{4}$. These are the higher four min terms.


## 4*16 BINARY DECODER

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know that 3 to 8 Decoder has three inputs $A_{2}, A_{1} \& A_{0}$ and eight outputs, $Y_{7}$ to $Y_{0}$. Whereas, 4 to 16 Decoder has four inputs $A_{3}, A_{2}, A_{1} \& A_{0}$ and sixteen outputs, $Y_{15}$ to $Y_{0}$
Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure.


The parallel inputs $A_{2}, A_{1} \& A_{0}$ are applied to each 3 to 8 decoder. The complement of input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, $Y_{7}$ to $Y_{0}$. These are the lower eight min terms. The input, $A_{3}$ is directly connected to Enable, $E$ of upper 3 to 8 decoder in order to get the outputs, $Y_{15}$ to $Y_{8}$. These are the higher eight min terms.


## 5*32 BINARY DECODER

In 5* 32 Decoder we have 5 input lines and 32 output lines and will just select one output line based on various input combinations.
We can design a $5 * 32$ decoder using one $2 * 4$ decoder and four $3 * 8$ decoder
-When $A=0, B=0, C=0, D E($ any 00 or 01 or 10 or 11)

- D1 Decoder is selected.
-When $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=1, \mathrm{DE}($ any 00 or 01 or 10 or 11)
-D2 Decoder is selected.
-When $A=0, B=1, C=0, D E($ any 00 or 01 or 10 or 11)
-D3 Decoder is selected.
-When $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1, \mathrm{DE}$ ( any 00 or 01 or 10 or 11 )
-D4 Decoder is selected.



