
Lecture of Module 1

Introduction to Digital Systems

Overview

 Introduction

 Digital and Analog Signals

 Logic Levels and Digital Waveforms

 Positive and Negative Logics

 Combinational and Sequential logics

 Types of Logic Devices

Digital electronics is a field of electronics involving the study of digital

signals and the engineering of devices that use or produce them.

This is in contrast to analog electronics and analog signals.

Digital electronic circuits are usually made from large assemblies of logic

gates, often packaged in integrated circuits.

Complex devices may have simple electronic representations of Boolean

logic functions.

Introduction

Analog versus Digital

 Most observables are analog

 But the most convenient way to represent and transmit information electronically is digital

 Analog/digital and digital/analog conversion is essential

Analog Signals: The analog signals were used in many systems to produce signals to carry

information. These signals are continuous in both values and time.

In short, analog signals – all signals that are natural or come naturally are analog signals.

Digital Signals: Unlike analog signals, digital signals are not continuous but signals are discrete in

value and time. These signals are represented by binary numbers and consist of different voltage

values.

Difference Between Analog And Digital Signal

Analog Signals Digital Signals

Continuous signals Discrete signals

Represented by sine waves Represented by square waves

Human voice, natural sound, analog

electronic devices are few examples

Computers, optical drives, and other

electronic devices

Continuous range of values Discontinuous values

Records sound waves as they are Converts into a binary waveform.

Only be used in analog devices.
Suited for digital electronics like

computers, mobiles and more.

Signal Examples Over Time

Time

Analog

Digital

Asynchronous

Synchronous

Continuous in value &
time

Discrete in value

Digital Signal

 An information variable represented by physical quantity.

 For digital systems, the variable takes on discrete values.

 Two level, or binary values are the most prevalent values in digital
systems.

 Binary values are represented abstractly by:

 digits 0 and 1

 words (symbols) False (F) and True (T)

 words (symbols) Low (L) and High (H)

 and words On and Off.

 Binary values are represented by values or ranges of values of physical
quantities

Binary Values: Other Physical Quantities

 What are other physical quantities represent 0 and 1?

 CPU: Voltage Levels

 Disk: Magnetic Field Direction

 CD: Surface Pits/Light

 Dynamic RAM: Electrical charge

Digital System

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs

Takes a set of discrete information inputs and discrete internal information (system state) and

generates a set of discrete information outputs.

Digital representations of logical functions

 Digital signals offer an effective way to execute logic. The formalism for performing logic with binary
variables is called switching algebra or Boolean algebra.

 Digital electronics combines two important properties:

 The ability to represent real functions by coding the information in digital form.

 The ability to control a system by a process of manipulation and evaluation of digital variables
using switching algebra.

 Digital signals can be transmitted, received, amplified, and retransmitted with no degradation.

 Binary numbers are a natural method of expressing logic variables.

 Complex logic functions are easily expressed as binary function.

 Digital information is easily and inexpensively stored

Logic Levels

In digital circuits, a logic level is one of a finite number of states that a digital signal can inhabit. Logic levels are

usually represented by the voltage difference between the signal and ground, although other standards exist. The

range of voltage levels that represent each state depends on the logic family being used.

In binary logic the two levels are logical high and logical low, which generally correspond to binary numbers 1

and 0 respectively. Signals with one of these two levels can be used in Boolean algebra for digital circuit design

or analysis.

Logic level Active-high signal Active-low signal

Logical high 1 0

Logical low 0 1

5.0

4.0

3.0

2.0

1.0

0.0

Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

Combinational Logic Circuit

The outputs of Combinational Logic Circuits are

only determined by the logical function of their

current input state, logic “0” or logic “1”, at any

given instant in time.

Sequential Logic Circuits

the output state of a “sequential logic circuit” is a function of

the following three states, the “present input”, the “past input”

and/or the “past output”. Sequential Logic circuits remember

these conditions and stay fixed in their current state until the

next clock signal changes one of the states, giving sequential

logic circuits “Memory”.

Sequential logic circuits are generally termed as two state or

Bistable devices which can have their output or outputs set in

one of two basic states, a logic level “1” or a logic level “0” and

will remain “latched” (hence the name latch) indefinitely in this

current state or condition until some other input trigger pulse or

signal is applied which will cause the bistable to change its state

once again.

Fixed function Logic devices

Fixed logic device such as a logic gate or a multiplexer or a flip-flop performs a given logic function that is known

at the time of device manufacture

Complexity Classification for Fixed-Function ICs

SSI (Small-scale integration) – 10 gates–

MSI (Medium-scale integration) – 10—100 gates

LSI (Large-scale integration) – 100—10,000 gates

VLSI (Very large-scale integration) – 10,000—100,000 gates

ULSI (Ultra large-scale integration) -- >100,000 gates

Programmable Logic Devices

A programmable logic device can be configured by the user to perform a large variety of logic functions

A programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits

PLD has an undefined function at the time of manufacture

Before using PLD in a circuit it must be programmed (reconfigured) by using a specialized program

Purpose of PLD:

 Permits elaborate digital logic designs to be implemented by the user on a single device.

 Is capable of being erased and reprogrammed with a new design.

Advantages of PLDs

 Programmability

 Re-programmability

 PLDs can be reprogrammed without being removed from the circuit board.

 Low cost of design

 Immediate hardware implementation

 less board space

 lower power requirements (i.e., smaller power supplies)

 Faster assembly processes

 higher reliability (fewer ICs and circuit connections => easier troubleshooting)

 availability of design software

Types of PLDs

 SPLDs (Simple Programmable Logic Devices)

 ROM (Read-Only Memory)

 PLA (Programmable Logic Array)

 PAL (Programmable Array Logic)

 GAL (Generic Array Logic)

 HCPLD (High Capacity Programmable Logic Device)

 CPLD (Complex Programmable Logic Device)

 FPGA (Field-Programmable Gate Array)

PLD

SPLD

ROM PLA PAL GAL

HCPLD

CPLD FPGA

PLD Configuration

 Combination of a logic device and memory

 Memory stores the pattern the PLD was programmed with

 EPROM

 Non-volatile and reprogrammable

 EEPROM

 Non-volatile and reprogrammable

 Static RAM (SRAM)

 Volatile memory

 Flash memory

 Non-volatile memory

 Antifuse

 Non-volatile and no re-programmability

PLA: A programmable logic array (PLA) has a programmable AND gate array, which links to

a programmable OR gate array

PLA

PAL: PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-
AND" plane

PAL

GAL: An improvement on the PAL was the Generic Array Logic device

This device has the same logical properties as the PAL but can be erased and

reprogrammed

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic

can be corrected by reprogramming

GALs are programmed and reprogrammed using a PAL programmer

GAL

HCPLD

 CPLD (Complex Programmable Logic Device)

 Lies between PALs and FPGAs in degree of complexity.

 Inexpensive

 FPGA (Field-Programmable Gate Array)

 Truly parallel design and operation

 Fast turnaround design

 Array of logic cells surrounded by programmable I/O blocks

FPGA

Number Systems

Overview

 Introduction

 Number Systems [binary, octal and hexadecimal]

 Number System conversions

Introduction

• Number System

Code using symbols that refer to a number of items

• Decimal Number System

Uses ten symbols (base 10 system)

• Binary System

Uses two symbols (base 2 system)

• Octal Number System

Uses eight symbols (base 8 system)

• Hexadecimal Number System

Uses sixteen symbols (base 16 system)

• Numeric value of symbols in different positions.

• Example - Place value in binary system:

Binary

8s 4s 2s 1s

Number

Place Value

Yes Yes No No

1 0 01

RESULT: Binary 1100 = decimal 8 + 4 + 0 + 0 = decimal 12

Binary Number

BINARY TO DECIMAL CONVERSION

Convert Binary Number 110011 to a Decimal Number:

32 + 16 + 0 + 0 + 2 + 1 = 51

1 1 0 0 1 1

Decimal

Binary

TEST

Convert the following binary

numbers into decimal numbers:

Binary 1001 =

Binary 1111 =

Binary 0010 =

TEST

Convert the following binary

numbers into decimal numbers:

Binary 1001 = 9

Binary 1111 =

Binary 0010 =

15

2

DECIMAL TO BINARY CONVERSION

Divide by 2 Process

1 101

Decimal # 13 ÷ 2 = 6 remainder 1

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

TEST

Convert the following decimal

numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17 =

TEST

Convert the following decimal

numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17 =

1011

0100

10001

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System, 0-9, A, B, C, D, E, F

Decimal
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Binary
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

Hexadecimal
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

100001

HEXADECIMAL AND BINARY CONVERSIONS

•Hexadecimal to Binary Conversion

Hexadecimal C 3

Binary 1100 0011

Binary 1110 1010

Hexadecimal E A

•Binary to Hexadecimal Conversion

DECIMAL TO HEXADECIMAL CONVERSION

Divide by 16 Process

Decimal # 47 ÷ 16 = 2 remainder 15

2 ÷ 16 = 0 remainder 2

F2

HEXADECIMAL TO DECIMAL CONVERSION

Convert hexadecimal number 2DB to a decimal number

512 + 208 + 11 = 731

2 D BHexadecimal

Decimal

Place Value 256s 16s 1s

(256 x 2) (16 x 13) (1 x 11)

TEST

Convert Hexadecimal number A6 to Binary

Convert Hexadecimal number 16 to Decimal

Convert Decimal 63 to Hexadecimal

63 =

16 =

A6 = 1010 0110

(Binary)

22

(Decimal)

3F

(Hexadecimal)

 Translate every hexadecimal digit into its

4-bit binary equivalent

 Examples:

(3A5)16 = (0011 1010 0101)2

(12.3D)16 = (0001 0010 . 0011 1101)2

(1.8)16 = (0001 . 1000)2

OCTAL NUMBERS

Uses 8 symbols -Base 8 System

0, 1, 2, 3, 4, 5, 6, 7

Decimal

0

1

2

3

4

5

6

7

8

9

Binary

000

001

010

011

100

101

110

111

000

001

Octal

0

1

2

3

4

5

6

7

10

11

001

001

OCTAL AND BINARY CONVERSIONS

•Octal to Binary Conversion

Octal 5 6

Binary 101 110

Binary 100 101

Octal 4 5

•Binary to Octal Conversion

DECIMAL TO OCTAL CONVERSION

Divide by 8 Process

Decimal # 129 ÷ 8 = 16 remainder 1

2 ÷ 8 = 0 remainder 2

12

16 ÷ 8 = 2 remainder 0

0

OCTAL TO DECIMAL CONVERSION

Convert octal number 201to a decimal number

128 + 0 + 1 = 129

2 0 1Octal

Decimal

Place Value 64s 8s 1s

(64 x 2) (8 x 0) (1 x 1)

Convert 0.101112 to base 8: 0.101_110 = 0.568

Convert 0.1110101 to base 16: 0.1110_1010 = 0.EA16

Arithmetic Operations

Overview

 Arithmetic Operations

 Decimal Arithmetic

 Binary Arithmetic

 Signed Binary Numbers

Arithmetic Operations

Addition

 Follow same rules as in decimal addition, with
the difference that when sum is 2 indicates a
carry (not a 10)

 Learn new carry rules

 0+0 = sum 0 carry 0

 0+1 = 1+0 = sum 1carry 0

 1+1 = sum 0 carry1

 1+1+1 = sum 1carry1

Carry 1 1 1 1 1 0

Augend 0 0 1 0 0 1

Addend 0 1 1 1 1 1

Result 1 0 1 0 0 0

1 1 1

0 1 0 1

+ 1 0 1 1

1 0 0 0 0

Carry Values

Subtraction
 Learn new borrow rules

 0-0 = 1-1 = 0 borrow 0

 1-0 = 1 borrow 0

 0-1 = 1 borrow 1

Borrow 1 1 0 0

Minuend 1 1 0 1 1

Subtrahend 0 1 1 0 1

Result 0 1 1 1 0

The rules of the decimal base applies to binary

as well. To be able to calculate 0-1, we have to

“borrow one” from the next left digit.

1 2

0 2 0 2

1 0 1 0

- 0 1 1 1

0 0 1 1

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

9’s Complement Method
Example: 72532 – 3250

9’s complement of 3250 is

9 9 9 9 9 – 0 3 2 5 0 = 9 6 7 4 9

7 2 5 3 2

+ 9 6 7 4 9

1 6 9 2 8 1

+1

6 9 2 8 2If Carry, result is positive.

Add carry to the partial result

Example: 3250 – 72532

9’s complement of 72532 is

9 9 9 9 9 – 7 2 5 3 2 = 2 7 4 6 7

0 3 2 5 0

+ 2 7 4 6 7

3 0 7 1 7

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 9’s complement of the result

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

10’s Complement Method
Example: 72532 – 3250

10’s complement of 3250 is

1 0 0 0 0 0 – 0 3 2 5 0 = 9 6 7 5 0

7 2 5 3 2

+ 9 6 7 5 0

1 6 9 2 8 2

Result is 6 9 2 8 2

If Carry, result is positive.

Discard the carry

Example: 3250 – 72532

10’s complement of 72532 is

1 0 0 0 0 0 – 7 2 5 3 2 = 2 7 4 6 8

0 3 2 5 0

+ 2 7 4 6 8

3 0 7 1 8

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 10’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

1’s Complement Method

Example: 1010100 – 1000100

1’s complement of 1000100 is 0111011

1 0 1 0 1 0 0

+ 0 1 1 1 0 1 1

1 0 0 0 1 1 1 1

+1

0 0 1 0 0 0 0If Carry, result is positive.

Add carry to the partial result

Example: 1000100 – 1010100

1’s complement of 1010100 is 0101011

1 0 0 0 1 0 0

+ 0 1 0 1 0 1 1

1 1 0 1 1 1 1

= – 0 0 1 0 0 0 0

If no Carry, result is negative.

Magnitude is 1’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

2’s Complement Method

If Carry, result is positive.

Discard the carry

If no Carry, result is negative.

Magnitude is 2’s complement of the result

Example: 1010100 – 1000100

2’s complement of 1000100 is 0111100

Example: 1000100 – 1010100

2’s complement of 1010100 is 0101100

1 0 1 0 1 0 0

+ 0 1 1 1 1 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

+ 0 1 0 1 1 0 0

1 1 1 0 0 0 0

= – 0 0 1 0 0 0 0

Signed Binary Numbers

 When a signed binary number is positive

• The MSB is ‘0’ which is the sign bit and rest bits represents the magnitude

 When a signed binary number is negative

• The MSB is ‘1’ which is the sign bit and rest of the bits may be represented

by three different ways

❖ Signed magnitude representation

❖ Signed 1’s complement representation

❖ Signed 2’s complement representation

Signed Binary Numbers

- 9 + 9

Signed magnitude representation 1 1001 0 1001

Signed 1’s complement representation 1 0110 0 1001

Signed 2’s complement representation 1 0111 0 1001

- 0 + 0

Signed magnitude representation 1 0000 0 0000

Signed 1’s complement representation 1 1111 0 0000

Signed 2’s complement representation -None- 0 0000

Range of Binary Number

Binary Number of n bits

 General binary number: ()

 Signed magnitude binary number: – () to + ()

 Signed 1’s complement binary number: – () to + ()

 Signed 2’s complement binary number: – () to + ()

Signed Binary Number Arithmetic

 Add or Subtract two signed binary number including its sign bit either signed 1’s

complement method or signed 2’s complement method

 The 1’s complement and 2’s complement rules of general binary number is applicable

to this

• It is important to decide how many bits we will use to represent the number

• Example: Representing +5 and -5 on 8 bits:

– +5: 00000101

– -5: 10000101

• So the very first step we have to decide on the number of bits to represent number

Digital Codes

Overview

 Introduction

 Binary Coded Decimal Code

 EBCDIC Code

 Excess-3 Code

 Gray Code

 ASCII Code

Introduction

 Calculations or computations are not useful until their results can be displayed in a

manner that is meaningful to people.

 We also need to store the results of calculations, and provide a means for data input.

 Thus, human-understandable characters must be converted to computer-

understandable bit patterns using some sort of character encoding scheme.

 As computers have evolved, character codes have evolved.

 Larger computer memories and storage devices permit richer character codes.

 The earliest computer coding systems used six bits.

 Binary-coded decimal (BCD) was one of these early codes. It was used by IBM

mainframes in the 1950s and 1960s.

 In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decimal

Interchange Code (EBCDIC).

 EBCDIC was one of the first widely-used computer codes that supported upper and

lowercase alphabetic characters, in addition to special characters, such as punctuation

and control characters.

 EBCDIC and BCD are still in use by IBM mainframes today.

 Other computer manufacturers chose the 7-bit ASCII (American Standard Code for

Information Interchange) as a replacement for 6-bit BCD codes.

 While BCD and EBCDIC were based upon punched card codes, ASCII was based upon

telecommunications (Telex) codes.

 Until recently, ASCII was the dominant character code outside the IBM mainframe world.

Binary Coded Decimal (BCD)

 Consider 5 + 5

 5 0 1 0 1

 +5 0 1 0 1

 giving 1 0 1 0 which is binary 10

but not a BCD digit!

 What to do?

 Try adding 6??

 Had 1010 and want to add 6 or 0110

 so 1 0 1 0

 plus 6 0 1 1 0

 Giving 1 0 0 0 0

 Add 7 + 6

 have 7 0 1 1 1

 plus 6 0 1 1 0

 Giving 1 1 0 1 and again out

of range

 Adding 6 0 1 1 0

 Giving 1 0 0 1 1 so a 1 carries

out to the next BCD digit

 FINAL BCD answer 0001 0011

or 1310

 Add the BCD for 417 to 195

 Would expect to get 612

 BCD setup - start with Least Significant

Digit

 0 1 0 0 0 0 0 1 0 1 1 1

 0 0 0 1 1 0 0 1 0 1 0 1

 1 1 0 0

 Adding 6 0 1 1 0

 Gives 1 0 0 1 0

 Had a carry to the 2nd BCD digit position

 1

 0 1 0 0 0 0 0 1 done

 0 0 0 1 1 0 0 1 0 0 1 0

 1 0 1 1

 Again must add 6 0 1 1 0

 Giving 1 0 0 0 1

 And another carry

 Had a carry to the 3rd BCD digit position

 1

 0 1 0 0 done done

 0 0 0 1 0 0 0 1 0 0 1 0

 0 1 1 0

 And answer is 0110 0001 0010 or the BCD for the base 10 number

612

EBCDIC Code

 The EBCDIC code is an 8-bit alphanumeric code that was
developed by IBM to represent alphabets, decimal digits and
special characters, including control characters.

 The EBCDIC codes are generally the decimal and the hexadecimal
representation of different characters.

 This code is rarely used by non IBM-compatible computer systems.

The Excess-3- Code

 Excess-3 code is self complementary code? Justify.

Gray Code

 Gray code is another important code that is also used to convert the decimal

number into 8-bit binary sequence. However, this conversion is carried in a

manner that the contiguous digits of the decimal number differ from each other by

one bit only

 In pure binary coding or 8421 BCD then counting from 7 (0111) to 8 (1000)

requires 4 bits to be changed simultaneously

 Gray coding avoids this since only one bit changes between subsequent numbers

Binary to Gray

Example:

Binary:

Gray:

+ ++++ +

1 0 11 10

1 1 1 0 1 1
g5 g4 g3 g2 g1 g0

b5 b4 b3 b2 b1 b0 g5 = b5

g4 = b5 Ꚛ b4

g3 = b4 Ꚛ b3

g2 = b3 Ꚛ b2

g1 = b2 Ꚛ b1

g0 = b1 Ꚛ b0

Gray to Binary

b5 = g5

b4 = g5 Ꚛ g4

b3 = g5 Ꚛ g4 Ꚛ g3

b2 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2

b1 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2 Ꚛ g1

b0 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2 Ꚛ g1 Ꚛ g0

Reflection of Gray Codes

00

01

11

10

0

0

0

0

1

1

1

1

10

11

01

00

00

01

11

10

0

0

0

0

0

0

0

0

000

001

011

010

110

111

101

100

1

1

1

1

1

1

1

1

100

101

111

110

010

011

001

000

So, called reflected code

Alphanumeric Codes

 How do you handle alphanumeric data?

 Easy answer!

 Formulate a binary code to represent characters! ☺

 For the 26 letter of the alphabet would need 5 bit for

representation.

 But what about the upper case and lower case, and the digits, and

special characters

ASCII

 ASCII stands for American Standard Code for Information Interchange

 The code uses 7 bits to encode 128 unique characters

 Formally, work to create this code began in 1960. 1st standard in 1963. Last updated in 1986

 Represents the numbers

 All start 011 xxxx and the xxxx is the BCD for the digit

 Represent the characters of the alphabet

 Start with either 100, 101, 110, or 111

 A few special characters are in this area

 Start with 010 – space and !”#$%&’()*+.-,/

 Start with 000 or 001 – control char like ESC

ASCII Properties

ASCII has some interesting properties:

▪ Digits 0 to 9 span Hexadecimal values 3016 to 3916

▪ Upper case A - Z span 4116 to 5A16

▪ Lower case a - z span 6116 to 7A16

• Lower to upper case translation (and vice versa)

occurs by flipping bit 6.

▪ Delete (DEL) is all bits set, a carryover from when

punched paper tape was used to store messages.

▪ Punching all holes in a row erased a mistake!

