
Lecture of Module 3

Combinational Circuits

Overview

 Introduction

 Half Adder

 Full Adder

 Half Subtractor

 Full Subtractor

 Ripple/Parallel Adder

 Adder-Subtractor

 Look-ahead carry Adder

The outputs of Combinational Logic

Circuits are only determined by the logical

function of their current input state(s), logic

“0” or(and) logic “1”, at any given instant.

Combinational logic circuits give us many

useful devices.

One of the simplest is the half adder, which

finds the sum of two bits.

Introduction

Half Adder

Full Adder

Full Adder using Half Adders

Half Subtractor

Full Subtractor

Full Subtractor using Half Subtractor

Ripple/ Parallel Adder

 Just as we combined half adders to make a full adder, full adders can connected

in series.

 The carry bit “ripples” from one adder to the next; hence, this configuration is

called a ripple-carry adder.

One’s Complement Circuit

In order to make an adder/subtractor, it is

necessary to use a gate that can

either pass the value through or generate its

one’s–complement.

The exclusive OR gate, XOR, is exactly what

we need.

This is controlled by a binary signal: Neg.

Let B = 1011.

If Neg = 0, then Y = 1011.

If Neg = 1, then Y = 0100.

Adder-Subtractor

 In any combinational circuit, the signal must propagate through the gates
before the correct output is available in the output terminal.

 The total propagation time equal to the propagation delay of a typical gate
times multiplied with the gate levels in the circuit.

 The propagation delay time in a parallel adder is the time it takes the
carry to propagate through the full adder.

 In each full adder the carry out from the carry in passes through two gate
levels.

 For n-bit parallel adder the total gate delay will be 2n.

 So, the carry propagation time is a limiting factor on the speed

with which two numbers are added in parallel.

 To avoid that another adder is widely used which employs the

principle of Look-ahead carry.

 The adder designed using the principle of Look-ahead carry is

called as Look-ahead carry adder or Carry look-ahead adder.

Look-Ahead Carry Adder

Ai

Bi

Ci

Pi

Gi

Si

Ci+1

Pi = Ai Ꚛ Bi

Gi = Ai Bi

The output Sum and Carry can be

expressed as:

Si = Pi Ꚛ Ci

Ci+1 = Gi + Pi Ci

Gi is called as carry generator and Pi is

called as carry propagator.

These equations show that a carry signal will be generated in two cases:

1) if both bits Ai and Bi are 1

2) if either Ai or Bi is 1 and the carry-in Ci is 1.

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

Let's apply these equations for a 4-bit adder:

• These expressions show that C2, C3 and C4 do not depend on its previous carry-in.

• Therefore C4 does not need to wait for C3 to propagate.

• As soon as C0 is computed, C4can reach steady state.

• The same is also true for C2 and C3.

• The general expression is

Ci+1= Gi+ PiGi-1 + PiPi-1Gi-2 + PiPi-1....P2P1G0 + PiPi-1 P1P0C0.

• This is a two level circuit

Carry Look-Ahead Generator Full Adder with Look-Ahead Carry

Total 4 gate delay: One gate delay for Pi and Gi generator, two gate delay for Carry

generator and one gate delay for Sum generator.

•CLA Adders generate the carry-in for each full adder simultaneously, by

using simplified equations involving Pi, Gi, and Cin.

•This system reduces the propagation delay.

•This is because the output carry at any stage is dependent only on the first

Carry signal given at the input.
•It is the fastest adder when compared to other addition mechanisms.

•The carry look-ahead adder circuit gets more complicated as the number of variables

increase.

•The circuit for a carry look-ahead adder is expensive as it involves more hardware.

•As the number of variables increases, the circuit implements more hardware.

•Thus, when the carry look-ahead adder is implemented as an IC, the area is bound to

increase.

Advantages:

Disadvantages:

Ripple Carry Adder Carry Look Ahead Adder

The Carry bit passes through a long logic
chain through the entire circuit.

The Carry bit enters in the system only at the
input.

As the full adder blocks are dependent on

their predecessor blocks’ carry value, the
entire system works a little slow.

Since the entire system depends on the first

carry input, the computations are very
quick, making it the fastest adder.

It has a simple repetitive design.
Has a slightly complicated design with many

logic gates

The system design is cheap to manufacture.
The manufacturing process is expensive as

compared to other systems.

The ripple carry adder chips have a
considerable size and area.

The chip area increases, as there are many
components in the circuit.

Ripple Carry Adder vs. Carry Look Ahead Adder

Combinational Circuits

Overview

 BCD Adder

 BCD Subtractor

 Comparator

 Error detection and correction codes

BCD

Decimal

Digit

BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

BCD Addition Rules

Comparing Binary and BCD Sums

 In the previous table Decimal sum from 0 to 9, the Binary sum same as BCD sum. So, no

conversion is needed.

 Apply correction if the Decimal sum is between 10-19.

❖ The correction is needed (Decimal sum 16-19)when the binary sum has an output carry

K = 1

❖ The correction is needed (Decimal sum 10-15)when Z8 = 1 and either Z4 = 1 or Z2 = 1.

 So, the condition for a correction and an output carry can be expressed by the Boolean

function:

C = K + Z8Z4 + Z8Z2

 When C = 1, it is necessary to add 0110 to the binary sum to get BCD sum and provide an

output carry for the next stage.

BCD Adder

Cascading of BCD Adders

BCD Subtraction Rules

Let two BCD numbers are A and B.

B to be subtracted from A.

RULES:

• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around carry

must be added

• If carry is not generated at most significant position

then the result is negative and the result is 9’s

complement of original result

Example

9’s Complement Circuit

• 9’complement of 2 is 7

• Binary equivalent of 2 is 0010

• 1’s complement of 0010 is 1101

• Then, 1101

+ 1010

= 0111 which is Binary equivalent of 7

• If carry discard it.

• 9’complement of 3 is 6

• Binary equivalent of 3 is 0011

• 1’s complement of 0011 is 1100

• Then, 1100

+ 1010

= 0110 which is Binary equivalent of 6

• If carry discard it.

BCD Subtractor Circuit

RULES:
• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around

carry must be added

• If carry is not generated at most significant

position then the result is negative and the result

is 9’s complement of original result

Comparator

 A magnitude digital Comparator is a combinational circuit that compares two digital or

binary numbers in order to find out whether one binary number is equal, less than or

greater than the other binary number.

 We logically design a circuit for which we will have two inputs one for A and other for B

and have three output terminals, one for A > B condition, one for A = B condition and one

for A < B condition.

 A comparator makes use of a cascade connection of identical sub networks similar to the

case of the parallel adder.

1-Bit Magnitude Comparator

 A comparator used to compare two bits is called a single bit comparator.

 It consists of two inputs each for two single bit numbers and three outputs to

generate less than, equal to and greater than between two binary numbers.

From the above truth table logical expressions for each

output can be expressed as follows:

A>B: AB' A<B: A'B A=B: A'B' + AB

Logic Diagram

From the above expressions we can derive the

following formula:
By using these Boolean expressions, we can implement a logic

circuit for this comparator as given below:

2-Bit Magnitude Comparator

A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude

comparator. It consists of four inputs and three outputs to generate less than, equal to and greater

than between two binary numbers.

From the Truth Table K-map for each output can be drawn as follows:

A>B: A1B1’ + A0B1’B0’ + A1A0B0’ A<B: A1’B1 + A0’B1B0 + A1’A0’B0

A=B: A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0B1B0 + A1A0’B1B0’

A1’B1’ (A0’B0’ + A0B0) + A1B1 (A0B0 + A0’B0’)

(A0B0 + A0’B0’) (A1B1 + A1’B1’)

(A0 Ex-Nor B0) (A1 Ex-Nor B1)

Logic Diagram

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

4-Bit Magnitude Comparator

In a 4-bit comparator the condition of A = B can be possible in the following four cases:

A = B is possible only when all the individual bits of one number exactly coincide with

corresponding bits of another number.

If A3 = B3 and A2 = B2 and A1 = B1 and A0 = B0

As the numbers are binary, the digits are either 0 or 1.

The equality relation of each pair of bits can be expressed logically with an equivalence function.

xi = AiBi + Ai’Bi’ i = 0, 1, 2, 3 where xi = 1 if the pair of bits in position i are equal.

So,

(A = B) = x3 . x2 . x1. x0

•A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude

comparator.

• It consists of eight inputs each for two four bit numbers.

• Three outputs to generate less than, equal to and greater than between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

If A3 = 1 and B3 = 0

If A3 = B3, A2 = 1 and B2 = 0

If A3 = B3, A2 = B2, A1 = 1 and B1 = 0

If A3 = B3, A2 = B2, A1 = B1, A0 = 1 and B0 = 0

The sequential comparison can be expressed logically as:

(A>B) = A3B3’ + x3 A2B2’ + x3x2 A1B1’ + x3x2x1 A0B0’

In a 4-bit comparator the condition of A<B can be possible in the following four cases:

If A3 = 0 and B3 = 1

If A3 = B3, A2 = 0 and B2 = 1

If A3 = B3, A2 = B2, A1 = 0 and B1 = 1

If A3 = B3, A2 = B2, A1 = B1, A0 = 0 and B0 =1

The sequential comparison can be expressed logically as:

(A<B) = A3’B3 + x3 A2’B2 + x3x2 A1’B1 + x3x2x1 A0’B0

Logic Diagram

(A = B) = x3 . x2 . x1. x0

(A>B) = A3B3’ + x3 A2B2’ + x3x2 A1B1’ + x3x2x1 A0B0’

(A<B) = A3’B3 + x3 A2’B2 + x3x2 A1’B1 + x3x2x1 A0’B0

Cascading Comparator

A comparator performing the comparison operation to more than four bits by cascading two or more 4-bit

comparators is called cascading comparator.

When two comparators are to be cascaded, the outputs of the lower-order comparator are connected to

corresponding inputs of the higher-order comparator.

Applications of Comparators

• Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).

• These are used in control applications in which the binary numbers representing physical

variables such as temperature, position, etc. are compared with a reference value.

• Comparators are also used as process controllers and for Servo motor control.

• Used in password verification and biometric applications.

Error Detection and Correction Codes

 Bits 0 and 1 corresponding to two different range of analog voltages. During transmission of
binary data from one system to the other, the noise may also be added. Due to this, there may
be errors in the received data at other system.

 That means a bit 0 may change to 1 or a bit 1 may change to 0. We can’t avoid the interference
of noise. But, we can get back the original data first by detecting whether any errors present
and then correcting those errors.

 For this purpose, we can use the following codes.

❖ Error detection codes

❖ Error correction codes

 Error detection codes − are used to detect the errors present in the received data. These
codes contain some bits, which are included to the original bit stream. These codes detect
the error, if it is occurred during transmission of the original data.

Example − Parity code, Hamming code, CRC code etc.

 Error correction codes − are used to correct the errors present in the received data so that,
we will get the original data. Error correction codes also use the similar strategy of error
detection codes.

It also detects the error.

Example − Hamming code, CRC code etc.

 Therefore, to detect and correct the errors, additional bits are appended to the data bits at
the time of transmission.

Parity Code Method

 A parity bit is an extra bit included in binary message to make total number of 1’s either odd or even.

 Parity word denotes number of 1’s in a binary string.

 There are two parity system-Even Parity and Odd Parity.

 In even parity system 1 is appended to binary string if there is an odd number of 1’s in string otherwise 0

is appended to make total even number of 1’s.

 In odd parity system, 1 is appended to binary string if there is even a number of 1’s to make an odd

number of 1’s.

 The receiver knows that whether sender is an odd parity generator or even parity generator.

 Suppose if sender is an odd parity generator then there must be an odd number of 1’s in received binary

string.

 If an error occurs to a single bit that is either bit is changed to 1 to 0 or 0 to 1, received binary bit will

have an even number of 1’s which will indicate an error.

Parity Generator

Parity Generator and Checker

Even Parity Generator and Checker

Parity Generator
Parity Generator

Parity CheckerParity Checker

Odd Parity Generator and Checker

Parity Generator and Checker

 The limitation of this method is that only error in a single bit would be identified.

 It does not tell which bit is incorrect .

 It also can not correct the incorrect bit.

 To overcome this another code called Hamming Code is used to detect an error.

 It indicates which bit is in error.

 It also correct that error.

 Because of this Hamming Code is called as self correcting code.

Hamming Code

 It was developed by R.W. Hamming for error correction.

 Hamming code is useful for both detection and correction of error present in the received
data.

 This code uses multiple parity bits and we have to place these parity bits in the positions of
powers of 2.

 The minimum value of 'k' for which the following relation is correct is nothing but the
required number of parity bits.

2k ≥ n + k + 1 Where, ‘n’ is the number of bits in the binary code, ‘k’ is the
number of parity bits

 Therefore, the number of bits in the Hamming code is equal to n + k.

 Based on requirement, we can use either even parity or odd parity while forming a
Hamming code. But, the same parity technique should be used in order to find whether any
error present in the received data.

 Let us find the Hamming code for 4-bit binary code

 We can find the required number of parity bits by using the following mathematical relation.

 2k ≥ n + k +1

 Substitute, n = 4 in the above mathematical relation.

 ⇒2k ≥ 4 + k + 1 ⇒ 2k ≥ 5 + k

 The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity

bits.

 Therefore, the number of bits in Hamming code will be 7, since there are 4 bits in binary

code and 3 parity bits.

 We have to place the parity bits and bits of binary code in the Hamming code as shown below.

 Now the Hamming code word format will be d7 d6 d5 p4 d3 p2 p1, where ‘d’ represents the data
bit and ‘p’ represents the parity bit.

 The parity bit p1, p2 and p4 are assigned values by the following three parity relations.

 p1 = d7 ⊕ d5 ⊕ d3 p2 = d7 ⊕ d6 ⊕ d3 p4 = d7 ⊕ d6 ⊕ d5

Example: 1

Construct an even parity seven bit Hamming code for a word 1011.

d7 d6 d5 p4 d3 p2 p1

1 0 1 ? 1 ? ?

From first relation to have even parity p1 should be 1. From second relation to have even parity p2
should be 0. From third relation to have even parity p4 should be 0. So, the final Hamming code is
1 0 1 0 1 0 1.

 For finding the position of error the following relations are to be followed.

 x = d7 ⊕ d5 ⊕ d3 ⊕ p1 y = d7 ⊕ d6 ⊕ d3 ⊕ p2 z = d7 ⊕ d6 ⊕ d5 ⊕ p4

 The parity check may be even parity or odd parity

 If parity relation is satisfied then x or y or z equal to 0, otherwise 1.

Example: 2

The Hamming code is received 1010001. What was the correct code transmitted.

The code received d7 d6 d5 p4 d3 p2 p1

1 0 1 0 0 0 1

Applying first parity relation x = 1. Applying second parity relation y = 1. Applying third parity
relation z = 0.

So, z y x = 011, which is equal to 3, that is, third data bit is erroneous one and should be corrected as
1 instead of 0. Now, the correct code is 1 0 1 0 1 0 1.

Combinational Circuits

Overview

 Multiplexer

 De-Multiplexer

 Decoder

 Encoder

 Priority Encoder

 BCD to Seven Segment Display

Multiplexer

 A Multiplexer or Mux is a device that has many inputs

and a single output.

 It selects a single input to the output from several inputs.

 The particular input chosen for output is determined by

the value of the multiplexer’s control lines.

 To be able to select among n inputs, log2n control lines

are needed.

 A multiplexer is also called as a data selector.

 The main purpose of Mux is to perform high speed

switching.

 In analog applications, these are made up of transistor

switches and relays, whereas in digital applications,

these are made up of logic gates.

Block diagram of Multiplexer

4-to-1 multiplexer

 This is what a 4-to-1 multiplexer looks like on
the inside.

 The 4X1 multiplexer comprises 4-input bits, 1-
output bit, and 2- control bits.

 The control bit AB decides which of the i/p
data bit should transmit the output.

 For example, when the control bits AB =00,
then the higher AND gate are allowed while
remaining AND gates are restricted. Thus, data
input d0 is transmitted to the output ‘q”

8-to-1 multiplexer

I0

I1

S2 S1 S0

A7

A6

A5

A4

A3

A2

A1

A0

16-to-1 multiplexer

I0

I1

S3 S2 S1 S0

Applications

 A Multiplexer is used in various applications wherein multiple data can be transmitted

using a single line.

 A Multiplexer is used to increase the efficiency of the communication system by

allowing the transmission of data, such as audio & video data from different channels

via cables and single lines.

 A Multiplexer is used in computer memory to decrease the number of copper lines

necessary to connect the memory to other parts of the computer.

 A multiplexer is used in telephone networks to integrate the multiple audio signals on a

single line of transmission.

 A Multiplexer is used to transmit the data signals from the computer system of a

satellite to the ground system by using a GSM (Global System for Mobile

communication) communication.

MUX as Universal Logic Circuit

Boolean function implementation using Mux

Rules:

• If two min-terms are not circled in a coloumn,

apply 0 to Mux input.

• If two min-terms are circled in a coloumn,

apply 1 to Mux input.

• If bottom one is circled and top one is not

circled in a column, apply A to Mux input.

• If bottom one is not circled and top one is

circled in a column, apply A’ to Mux input.

Demultiplexer

 A Demultiplexer or Demux is a circuit which can distribute or
deliver multiple outputs from a single input.

 It can perform as single input many output switch.

 The output lines of demultiplexer are ‘N’ in number, select line
number is ‘M’ and N = 2M.

 The control signal or select input code decides the output line to
which the input has to be transmitted.

 It is also called as Data distributor.

 There are several types of Demultiplexers

❖ 1:2 Demultiplexer or 1-to-2 Demultiplexer

❖ 1:4 Demultiplexer

❖ 1:8 Demultiplexer

❖ 1:16 Demultiplexer

1:2 Demultiplexer

1:4 Demultiplexer

• The input bit is Data D with two

select lines A and B.

• The input bit D is transmitted to four

output bits Y0, Y1, Y2, and Y3.

• When AB is 00 the upper AND

gate is enabled while the other AND

gates are disabled. Thus, the data is

transmitted to Y0.

• If D is low, then Y0 is low and if D

is high, Y0 is high. The value of Y0

depends on the value of D.

1:8 Demultiplexer

Applications of Demultiplexer (Demux)

 Demux are widely used in microprocessor, computers and digital electronics.

 Demultiplexer and Multiplexer both are used in communication systems to carry multiple data signals
(i.e. audio, video etc) using single line for transmission.

 In Arithmetic logic unit (ALU), the output of ALU can be stored in storage unit (multiple registers) by
using Demultiplexer.

It is also used

 To enable the different rows of memory chips depends on the address. Also to chose different banks of
memory.

 To enable different functional unit in the system

 To select different IO devices for data transfer

 Data acquisition systems

 Automatic test equipment systems

 Security monitoring systems

Decoder

 Decoder is a combinational logic

circuit whose purpose is to decode the

information.

 It is comprised of n number of input

lines and 2n number of output lines.

 In every probable input condition,

among the various output signals, only

one output signal will produce the

logic one.

 So, this is n-to-2n decoder, where n

input lines and 2n output lines.

 Generally, there are 3 types of line

decoders (2-to-4, 3-to-8 and 4-to-16).

Logic Design Using Decoders

 An 𝑛-to-2𝑛 line decoder is a minterm generator.

 By using or-gates in conjunction with an 𝑛-to-2𝑛 line decoder, realizations

of Boolean functions are possible.

 Do not correspond to minimal sum-of-products.

 Are simple to produce. Particularly convenient when several functions of

the same variable have to be realized.

Implementation of a Full Adder circuit using Decoder.

S(x0, x1, x2) = ∑(1, 2, 4, 7)

C(x0, x1, x2) = ∑(3, 5, 6, 7)

S

C

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Decoders with enable inputs

 When disabled, all outputs of the decoder can either be at logic-0 or logic-1.

 Enable input provides the decoder with additional flexibility.

 Idea: if data is applied to the enable input.

 Process is known as demultiplexing.

 Now Decoder works as Demultiplexer.

 Enable inputs are useful when constructing larger decoders from smaller decoders.

Data

𝑥0𝑥1𝐸

If 𝑥0 = 0, 𝑥1 = 0 then

data appears on

line 𝑧0.

Larger Decoders from smaller Decoder

Applications

 In digital electronic decoder play an important role. It is used to convert the data from
one form to another form.

 Generally, these are frequently used in the communication systems like
telecommunication, networking, and transfer the data from one end to the other end.

 In the same way it is also used in the digital domain for easy transmission of data.

 It is also used as

Binary to Octal converter

BCD to Decimal converter

BCD to Seven Segment Display

 Boolean functions can be implemented using decoder.

BCD to Seven segment display

 The Seven segment display is most frequently used the digital display in

calculators, digital counters, digital clocks, measuring instruments, etc.

 Usually, the displays like LED’s as well as LCD’s are used to display the

characters as well as numerical numbers.

 These displays are frequently driven by the output phases of

digital integrated circuits like decade counters as well as latches.

 However, the outputs of these are in the type of 4-bit BCD (Binary Coded

Decimal), so not appropriate for directly operating the seven segment

display.

 For that, a display decoder can be employed for converting BCD code to

seven segment code.

 Generally, it has four input lines as well as seven output lines.

 The Decoder is an essential component in BCD to seven segment display.

 The circuit design, as well as operation, mainly depends on the concepts of Boolean

Algebra as well as logic gates.

 The common terminals are either anode or cathode. So, it may be common cathode type

or common anode type.

Truth Table

a = F1 (A, B, C, D) = ∑m (0, 2, 3, 5, 6, 7, 8, 9)

b = F2 (A, B, C, D) = ∑m (0, 1, 2, 3, 4, 7, 8, 9)

c = F3 (A, B, C, D) = ∑m (0, 1, 3, 4, 5, 6, 7, 8, 9)

d = F4 (A, B, C, D) = ∑m (0, 2, 3, 5, 6, 8, 9)

e = F5 (A, B, C, D) = ∑m (0, 2, 6, 8)

f = F6 (A, B, C, D) = ∑m (0, 4, 5, 6, 8, 9)

g = F7 (A, B, C, D) = ∑m (2, 3, 4, 5, 6, 8, 9)

K-Map

Logic Circuit

IC and Connection Diagram

Encoder

 An Encoder is a combinational circuit that performs

the reverse operation of Decoder.

 It has maximum of 2N input lines and ‘N’ output

lines, hence it encodes the information from 2N

inputs into an N-bit code.

 It will produce a binary code equivalent to the

input.

 The 4 to 2 Encoder consists of four inputs Y3,

Y2, Y1, Y0 and two outputs A1 and A0.

 At any time, only one of these 4 inputs can be ‘1’

in order to get the respective binary code at the

output.

 The 8 to 3 Encoder or octal to Binary encoder

consists of 8 inputs : Y7 to Y0 and 3 outputs :

A2, A1 & A0.

 Each input line corresponds to each octal digit and

three outputs generate corresponding binary code.

4 to 2 Encoder

8 to 3 Encoder

4-to-2 Binary Encoder

0

0

1

1

1

0

1

w 3 y 1

0

y 0

0

0

1

0

w 2

0

1

0

0

w 1

1

0

0

0

w 0

0

0

0

1
w 1

w 0

y 0

w 2

w 3
y 1

8-to-3 Binary Encoder

At any one time, only
one input line has a value of 1.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Priority Encoder

 One of the main disadvantages of standard digital encoder is that they can generate
the wrong output code when there is more than one input present at logic level “1”.

 One simple way to overcome this problem is to “Prioritize” the level of each input
pin.

 If there is more than one input at logic level “1” at the same time, the actual output code
would only correspond to the input with the highest designated priority.

 This type of digital encoder is known as Priority Encoder or P-Encoder for short.

 The Priority Encoder solves the problems by allocating a priority level to each input.

 The priority encoders output corresponds to the currently active input which has the highest
priority.

 So, when an input with a higher priority is present, all other inputs with a lower priority will
be ignored.

x

0

0

1

0

1

0

w0 y1

x

y0

1 1

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

x

0

0

1

0

1

0

w0 y1

x

y0

1 1

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

1 x x x

0 1 x x

0 0 1 x

0 0 0 1
0 0 0 0 x x

4-to-2 Priority Encoder

Truth Table

K-Map

xx w1 w0

x

00 01 11 10

0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

00

01

11

10

w3 w2

y1 = w3 + w2

xx w1 w0

x

00 01 11 10

0 1 1

0 0 0 0

1 1 1 1

1 1 1 1

00

01

11

10

w3 w2

y0 = w3 + w1 w2

y0 = w3 + w1 w2

y1 = w3 + w2

Circuit for the 4-to-2 priority encoder

 From the truth table of the Priority

Encoder, the Boolean expression

with data inputs D0 to D7 and

outputs Q0, Q1, Q2 is given as:

8-to-3 Priority Encoder

Applications

 Keyboard Encoder

 Interrupt Requests

 Octal to Binary Encoder

 Decimal to Binary Encoder

 Decimal to BCD Encoder

