
Lecture of Module 2

Logic Gates

Overview

 Introduction

 Logical Operators

 Basic Gates

 Universal Gates

 Realization of Basic Gates using Universal Gates

 Other Logic Gates

Introduction

Binary variables take on one of two values

Logical operators operate on binary values and binary variables

Basic logical operators are the logic functions AND, OR and NOT

Logic gates implement logic functions

Boolean Algebra: a useful mathematical system for specifying and

transforming logic functions

We study Boolean algebra as a foundation for designing and analyzing digital

systems

Binary Variables

 Recall that the two binary values have different names:

 True/False

 On/Off

 Yes/No

 1/0

 We use 1 and 0 to denote the two values.

 Variable identifier examples:

 A, B, x, y, z, or X1 , X2 etc. for now

Logical Operations

 The three basic logical operations are:

 AND

 OR

 NOT

 AND is denoted by a dot (·)

 OR is denoted by a plus (+)

 NOT is denoted by an over bar (¯), a single quote mark (') after, or (~) before

the variable

Operator

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10=

01=

▪Operators operate on binary values and binary variables

▪Operations are defined on the values "0" and "1" for each operator:

Truth Tables

 Truth table - a tabular listing of the values of a function for all possible combinations of values

on its arguments

 Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

X Z = ̅X

0 1

1 0

Logic Function Implementation

 Using Switches

 For inputs:

 logic 1 is switch closed

 logic 0 is switch open

 For outputs:

 logic 1 is light on

 logic 0 is light off.

Switches in parallel => OR

Switches in series => AND

Logic Gates

 In the earliest computers, switches were opened and closed by magnetic

fields produced by energizing coils in relays. The switches in turn opened

and closed the current paths.

 Later, vacuum tubes that open and close current paths electronically replaced

relays.

 Today, transistors are used as electronic switches that open and close current

paths.

 NOT, AND and OR Gates (Basic gates)

 NAND and NOR Gates (Universal logic gates)

NOT Gate

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

AND Gate

If all inputs are 1, the output is 1; otherwise, the output is 0

Or if any input is 0, output is 0

OR Gate

If all inputs are 0, the output is 0; otherwise, the output is 1

Or if any input is 1, output will be 1

Universal Gates

❑ Universal Logic Gate: Any basic gate or logic function can be

realized using this gate

❑ Two universal logic gates

❖ NAND

❖ NOR

NAND Gate

If all inputs are 1, the output is 0; otherwise, the output is 1

NOR Gate

If all inputs are 0, the output is 1; otherwise, the output is 0

NAND gates are sometimes called universal gates because they can be used to

produce the other basic Boolean functions.

Inverter

AA

AND gate

A

B
AB

A

B

A + B

OR gate

A

B

A + B

NOR gate

Realization

NOR gates are also universal gates and can form all of the basic gates.

Inverter

AA

OR gate

A

B
A + B

A

B

AB

AND gate

A

B

AB

NAND gate

Realization

XOR Gate

If odd numbers of inputs are 1, the output is 1; otherwise, the output is 0

X-NOR Gate

X Y Z
XNOR

X

Y
Z 0 0 1

0 1 0

1 0 0

1 1 1

Constructing Gates

Transistor

A device that acts either as a wire that conducts electricity or as a resistor that blocks the
flow of electricity, depending on the voltage level of an input signal

A transistor has no moving parts, yet acts like a switch

It is made of a semiconductor material, which is neither a particularly good conductor of
electricity nor a particularly good insulator

A transistor has three terminals

 A source

 A base

 An emitter, typically connected to a ground wire

If the electrical signal is grounded, it is allowed to flow through
an alternative route to the ground (literally) where it can do
no harm

AND Gate OR Gate

Timing Diagram

A

B

F=A•B

G=A+B

H=A’

1

1

1

1

1
0

0

0

0

0

t0 t1 t2 t3 t4 t5 t6

Input

signals

Gate

Output

Signals

Basic

Assumption:

Zero time for

signals to

propagate

Through gates

Transitions

Gate Delay

 In actual physical gates, if one or more input changes causes the output to change, the

output change does not occur instantaneously.

 The delay between an input change(s) and the resulting output change is the gate delay

denoted by tG:

tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns

Boolean Algebra

Overview

 Introduction

 Boolean Algebra

 Properties

 Algebraic Manipulation

 De-Morgan Theorem

 Complementation

 Truth Table

Introduction

 Understand the relationship between Boolean logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to form complex computer systems.

 In the latter part of the nineteenth century, George Boole suggested that logical

thought could be represented through mathematical equations.

 Computers, as we know them today, are implementations of Boole’s Laws of

Thought.

 In this chapter, you will learn the simplicity that constitutes the essence of the

machine (Boolean Algebra).

Boolean algebra

 Boolean algebra is a mathematical system for the manipulation of

variables that can have one of two values.

 In formal logic, these values are “true” and “false.”

 In digital systems, these values are “on” and “off,” 1 and 0, or “high”

and “low.”

 Boolean expressions are created by performing operations on Boolean

variables.

 Common Boolean operators include AND, OR, NOT, XOR, NAND

and NOR

 A Boolean operator can be completely described using a truth

table.

 The truth table for the Boolean operators AND, OR and NOT are

shown at the right.

 The AND operator is also known as a Boolean product.

 The OR operator is the Boolean sum.

 The NOT operation is most often designated by an over-bar. It is

sometimes indicated by a prime mark (‘) or an “elbow” ().

 A Boolean function has:

• At least one Boolean variable,

• At least one Boolean operator, and

• At least one input from the set {0,1}

 It produces an output that is also a member of the set {0,1}

Now you know why the binary numbering system is so

handy in digital systems

Conceptually

Boolean

Algebra

Logic

Circuit
Truth

Table

 Digital computers contain circuits that implement Boolean functions.

 The simpler that we can make a Boolean function, the smaller the circuit

that will result.

 Simpler circuits are cheaper to build, consume less power, and run faster

than complex circuits.

 With this in mind, we always want to reduce our Boolean functions to their

simplest form.

 There are a number of Boolean identities that help us to do this.

 Most Boolean identities have an AND (product) form as well as an OR

(sum) form.

Properties of Boolean Algebra

 Our second group of Boolean identities should be familiar to you

from your study of algebra:

 Our last group of Boolean identities are perhaps the most useful.

 If you have studied set theory or formal logic, these laws are also familiar to you.

 We can use Boolean identities to simplify the function:

as follows:

With respect to duality, Identities 1 – 8 have the following

relationship:

1. X + 0 = X 2. X • 1 = X (dual of 1)

3. X + 1 = 1 4. X • 0 = 0 (dual of 3)

5. X + X = X 6. X • X = X (dual of 5)

7. X + X’ = 1 8. X • X’ = 0 (dual of 8)

Algebraic Manipulation

 Boolean algebra is a useful tool for simplifying digital circuits.

 Why do it? Simpler can mean cheaper, smaller, faster.

 Example: Simplify F = x’yz + x’yz’ + xz.
F= x’yz + x’yz’ + xz
= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz

 Example: Prove x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

 Proof: x’y’z’+ x’yz’+ xyz’
= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

 Sometimes it is more economical to build a circuit using the complement of a

function (and complementing its result) than it is to implement the function

directly.

 DeMorgan’s law provides an easy way of finding the complement of a Boolean

function.

 DeMorgan’s law states:

Complementation

 Find the complement of F(x, y, z) = x y’ z’ + x’ y z

 G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’) DeMorgan again

 Note: The complement of a function can also be derived by finding the

function’s dual, and then complementing all of the literals

Truth Table

 Enumerates all possible combinations of variable values

and the corresponding function value

 Truth tables for some arbitrary functions

F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the right.

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

 Truth table: a unique representation of a Boolean function

 If two functions have identical truth tables, the functions
are equivalent (and vice-versa).

 Truth tables can be used to prove equality theorems.

 However, the size of a truth table grows exponentially with
the number of variables involved. This motivates the use of
Boolean Algebra.

Standard SOP and POS

Overview

 Introduction

 SOP and POS

Minterms and Maxterms

Canonical Forms

Conversion Between Canonical Forms

Standard Forms

 Through our exercises in simplifying Boolean expressions, we

see that there are numerous ways of stating the same Boolean

expression.

These “synonymous” forms are logically equivalent.

Logically equivalent expressions have identical truth tables.

 In order to eliminate as much confusion as possible, designers

express Boolean functions in standardized or canonical form.

Introduction

 There are two canonical forms for Boolean expressions: Sum-Of-Products
(SOP) and Product-Of-Sums (POS).

 Recall the Boolean product is the AND operation and the Boolean sum
is the OR operation.

 In the Sum-Of-Products form, ANDed variables are ORed together.

 For example:

 In the Product-Of-Sums form, ORed variables are ANDed together:

 For example:

SOP and POS

Definitions

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the variables appear exactly

once, either complemented or un-complemented

 Maxterm: a sum term in which all the variables appear exactly

once, either complemented or un-complemented

Truth Table notation for Minterms and Maxterms

 Minterms and Maxterms are easy to denote
using a truth table.

 Example:
Assume 3 variables x,y,z (order is fixed)

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

 Any Boolean function F() can be expressed as a
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

 In other words, every function F() has two
canonical forms:

 Canonical Sum-Of-Products (sum of
minterms)

 Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms

 Canonical Sum-Of-Products:

The minterms included are those mj such that F() = 1 in row j of the truth table for F().

 Canonical Product-Of-Sums:

The maxterms included are those Mj such that F() = 0 in row j of the truth table for F().

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and

m(1,2,4,6) indicates that the minterms to be included are m1, m2, m4, and m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form,

and M(0,3,5,7) indicates that the maxterms to be included are M0, M3, M5, and M7.

• Since mj = Mj’ for any j,

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c)

Conversion Between Canonical Forms

 Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in

the original form with those that do not.

 Example:

f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)

=+++=+++=)7,5,2,0(7520 mmmmmXYZZYXZYXZYXF

=+++=+++=)6,4,3,1(6431 mmmmmZXYZYXYZXZYXF

=
++++++++==

=+++=

+++=

)6,4,3,1(

))()()((6431

64316431

6431

M

ZYXZYXZYXZYXMMMMF

mmmmmmmmF

mmmmF

Standard Forms

• Standard forms are “like” canonical forms, except that not all

variables need appear in the individual product (SOP) or sum

(POS) terms.

• Example:

f1(a,b,c) = a’b’c + bc’ + ac’

is a standard sum-of-products form

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

is a standard product-of-sums form.

Conversion of SOP from standard to canonical form

 Expand non-canonical terms by inserting equivalent of 1 in

each missing variable x:

(x + x’) = 1

 Remove duplicate minterms

 f1(a,b,c) = a’b’c + bc’ + ac’

= a’b’c + (a+a’)bc’ + a(b+b’)c’

= a’b’c + abc’ + a’bc’ + abc’ + ab’c’

= a’b’c + abc’ + a’bc’ + ab’c’

Conversion of POS from standard to canonical form

 Expand non-canonical terms by adding 0 in terms of missing

variables (e.g., xx’ = 0) and using the distributive law

 Remove duplicate maxterms

 f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)•(a’+b’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)

Minimization Techniques

Overview

 Introduction

 Karnaugh Map (K-Map)

 Simplification Rules

 K-Map Simplification for Two Variables

 K-Map Simplification for Three Variables

 K-Map Simplification for Four Variables

 Don’t Care Conditions

 Redundancy

 Design of Combinational Circuits

Introduction

Unique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement

- For a simple function, it is possible to obtain a simple expression for

low cost implementation

- But, with complex functions, it is a very difficult for implementation

Truth

Table

Boolean

Function

Truth

Table

Boolean

function

Karnaugh

Map

Simplified

Boolean

Function

Karnaugh Map (K-map) is a simple procedure for simplification of

Boolean expressions.

Karnaugh Map (K-Map)

 Karnaugh maps (K-maps) are graphical
representations of Boolean functions.

 One map cell corresponds to a row in the truth
table.

 Also, one map cell corresponds to a minterm or
a maxterm in the Boolean expression

 Each term is identified by a decimal number
whose binary representation is identical to the
binary interpretation of the input values of the
term.

A’B’

A’B

AB

AB’

C’D’ C’D CD CD’

K-Map Simplification for Two Variables

 Of course, the Minterm function that we derived from our

Truth Table was not in simplest terms.

 That’s what we started with in this example.

 We can, however, reduce our complicated expression to its

simplest terms by finding adjacent 1s in the K-map that can

be collected into groups that are powers of two.

• In our example, we have two

such groups.

– Can you find them?

The rules of K-map simplification are:

• Groupings can contain only 1s; no 0s.

• The number of 1s in a group must be a power of 2 – even if it

contains a single 1.

• Nearby 1s are to be grouped.

• Corner 1s are to be grouped.

• Group that wraps around the sides of a K-map.

• Diagonal groups are not allowed.

• The groups must be made as large as possible.

• Groups can overlap.

K-Map Rules

 The best way of selecting two groups of 1s form our simple K-

map is shown.

 We see that both groups are powers of two and that the groups

overlap.

K-Map Rules

2-variable Karnaugh maps are trivial but can be used to introduce the
methods you need to learn. The map for a 2-input OR gate looks like this:

A

B
Y

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A

B
0 1

0

1

1

11

B

A

A+B

K-Map Simplification for Two Variables

K-Map Simplification for Three Variables

 A K-map for three variables is constructed as shown in the diagram below.

 We have placed each Minterm in the cell that will hold its value.

 Notice that the values for the yz combination at the top of the matrix

form a pattern that is not a normal binary sequence.

 Consider the function:

F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

 Its K-map is given below.

 What is the largest group of 1s that is a power of 2?

 This grouping tells us that changes in the variables x and y have no influence upon

the value of the function: They are irrelevant.

 This means that the function, F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

reduces to F = Z.

You could verify this

reduction with

Boolean Algebra

 Now for a more complicated K-map. Consider the function:

 Its K-map is shown below. There are (only) two groupings of 1s.

 Can you find them?

 In this K-map, we see an example of a group that wraps around the

sides of a K-map.

 == C B(0,4)f == BA (4,5)f == B(0,1,4,5)f == A(0,1,2,3)f

BC
00

0

01

1

11 10A

1 0 0 0

1 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 1 0 0

BC
00

0

01

1

11 10A

1 1 1 1

0 0 0 0

BC
00

0

01

1

11 10A

1 1 0 0

1 1 0 0

 == C A(0,4)f == CA (4,6)f == C A(0,2)f == C(0,2,4,6)f

BC
00

0

01

1

11 10A

0 1 1 0

0 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

0 0 0 0

f = ∑ (1,3) = A’C

K-Map Simplification for Four Variables

 The K-map can be extended to accommodate the 16 Minterms that are

produced by a four-input function.

 This is the format for a 16-minterm K-map.

 We have populated the K-map shown below with the nonzero minterms

from the function:

 Can you identify (only) three groups in this K-map?

 Our three groups consist of:

 A purple group entirely within the K-map at the right.

 A pink group that wraps the top and bottom.

 A green group that spans the corners.

 Thus we have three terms in our final function:

 It is possible to have a choice as to how to pick groups within a K-map, while

keeping the groups as large as possible.

 The (different) functions that result from the groupings below are logically

equivalent.

 ••== DCB(0,8)f ••== DCB(5,13)f ••== DBA(13,15)f ••== DBA(4,6)f

 •== CA(2,3,6,7)f •== DB)(4,6,12,14f •== CB)(2,3,10,11f •== DB(0,2,8,10)f

CD
00

00

01

01

11

11

10

10

AB

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 1 0 0

0 1 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 0 0

0 0 0 0

0 0 1 1

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

CD
00

00

01

01

11

11

10

10

AB

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

CD
00

00

01

01

11

11

10

10

AB

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

f (4,5,6,7) A B= = • f (3,7,11,15) C D= = •
f (0,3,5,6,9,10,12,15)= f (1,2,4,7,8,11,13,14)=

f A B C D= f A B C D=

f (1,3,5,7,9,11,13,15)= f (0,2,4,6,8,10,12,14)= f (4,5,6,7,12,13,14,15)= f (0,1,2,3,8,9,10,11)=

f D= f D= f B= f B=

Don’t Care Conditions

 Real circuits don’t always need to have an output defined for every possible

input.

 For example, some calculator displays consist of 7-segment LEDs. These

LEDs can display 2 7 patterns but all patterns are not used.

 If a circuit is designed so that a particular set of inputs can never happen, we

call this set of inputs a don’t care condition.

 They are very helpful to us in K-map circuit simplification.

 In a K-map, a don’t care condition is identified by an X in the cell of the

minterm(s) for the don’t care inputs, as shown below.

 In performing the simplification, we are free to include or ignore the X’s

when creating our groups.

 In one grouping in the K-map below, we have the function:

 F = W’X’ + YZ

 A different grouping gives us the function:

 The truth table of:

F (W, X, Y, Z) = W’X’ + YZ

differs from the truth table of:

 However, the values for which they differ, are the inputs for which we have

don’t care conditions.

Redundancy

Design of combinational digital circuits

 Steps to design a combinational digital circuit:

 From the problem statement derive the truth table

 From the truth table derive the unsimplified logic expression

 Simplify the logic expression

 From the simplified expression draw the logic circuit

 Example: Design a 3-input (A,B,C) digital circuit that will give at its

output (X) a logic 1 only if the binary number formed at the input has

more ones than zeros.

BCABACX ++=

A B C

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

X

0

0

0

1

0

1

1

1

Inputs Output

0

1

2

3

4

5

6

7

BC
00

0

01

1

11 10A

0 0 1 0

0 1 1 1

A B C

X

= 7) 6, 5, (3,X

C BABACAX ++=

A B C

X

= ,7,8,9)(2,3,4,5,6XA B C

0

0

0

0

0

1

X

0

0

Inputs Output

0

1

D

0

0

0 0 0 12 1

0 0 1 13 1

0 1 0 14 0

0 1 1 15 0

0 1 0 16 1

0 1 1 17 1

1 0 0 18 0

1 0 1 19 0

1 0 0 010 1

1 0 1 011 1

1 1 0 012 0

1 1 1 013 0

1 1 0 014 1

1 1 1 015 1
D

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

1 1 1 1

0 0 0 0

1 1 0 0

X

Same

 Example: Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a

logic 1 only if the binary number formed at the input is between 2 and 9 (including).

Conclusion

 K-maps provide an easy graphical method of simplifying Boolean

expressions.

 A K-map is a matrix consisting of the outputs of the minterms of a

Boolean function.

 In this section, we have discussed 2- 3- and 4-input K-maps. This

method can be extended to any number of inputs through the use of

multiple tables.

Recapping the rules of K-map simplification:

• Groupings can contain only 1s; no 0s.

• Groups can be formed only at right angles; diagonal groups are not
allowed.

• The number of 1s in a group must be a power of 2 – even if it contains a
single 1.

• The groups must be made as large as possible.

• Groups can overlap and wrap around the sides of the K-map.

• Use don’t care conditions when you can.

• Redundancy must be reduced

