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Introduction

Binary variables take on one of two values

Logical operators operate on binary values and binary variables

Basic logical operators are the logic functions AND, OR and NOT

Logic gates implement logic functions

Boolean Algebra: a useful mathematical system for specifying and

transforming logic functions

We study Boolean algebra as a foundation for designing and analyzing digital

systems



Binary Variables

 Recall that the two binary values have different names:

 True/False

 On/Off

 Yes/No

 1/0

 We use 1 and 0 to denote the two values.

 Variable identifier examples:

 A, B, x, y, z, or X1 , X2  etc. for now



Logical Operations

 The three basic logical operations are:

 AND 

 OR

 NOT

 AND is denoted by a dot (·)

 OR is denoted by a plus (+)

 NOT is denoted by an over bar ( ¯ ), a single quote mark (') after, or (~) before 

the variable



Operator 

 

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10=

01=

▪Operators operate on binary values and binary variables

▪Operations are defined on the values "0" and "1" for each operator:



Truth Tables

 Truth table - a tabular listing of the values of a function for all possible combinations of values 

on its arguments

 Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

X Z =  ̅X

0 1

1 0



Logic Function Implementation

 Using Switches

 For inputs: 

 logic 1 is switch closed

 logic 0 is switch open

 For outputs:

 logic 1 is light on

 logic 0 is light off.

Switches in parallel => OR

Switches in series => AND



Logic Gates

 In the earliest computers, switches were opened and closed by magnetic 

fields produced by energizing coils in relays. The switches in turn opened 

and closed the current paths.

 Later, vacuum tubes that open and close current paths electronically replaced 

relays.

 Today, transistors are used as electronic switches that open and close current 

paths.

 NOT, AND and OR Gates (Basic gates)

 NAND and NOR Gates (Universal logic gates)



NOT Gate

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output



AND Gate

If all inputs are 1, the output is 1; otherwise, the output is 0

Or if any input is 0, output is 0



OR Gate

If all inputs are 0, the output is 0; otherwise, the output is 1

Or if any input is 1, output will be 1



Universal Gates

❑ Universal Logic Gate: Any basic gate or logic function can be 

realized using this gate

❑ Two universal logic gates

❖ NAND

❖ NOR



NAND Gate

If all inputs are 1, the output is 0; otherwise, the output is 1



NOR Gate

If all inputs are 0, the output is 1; otherwise, the output is 0



NAND gates are sometimes called universal gates because  they can be used to 

produce the other basic Boolean functions.  

Inverter

AA

AND gate

A

B
AB

A

B

A + B

OR gate

A

B

A + B

NOR gate

Realization



NOR gates are also universal gates and can form all of the basic gates.  

Inverter

AA

OR gate

A

B
A +  B

A

B

AB

AND gate

A

B

AB

NAND gate

Realization



XOR Gate

If odd numbers of inputs are 1, the output is 1; otherwise, the output is 0



X-NOR Gate

X Y  Z
XNOR

X

Y
Z 0 0  1

0 1  0

1 0  0

1 1  1



Constructing Gates

Transistor

A device that acts either as a wire that conducts electricity or as a resistor that blocks the 
flow of electricity, depending on the voltage level of an input signal 

A transistor has no moving parts, yet acts like a switch

It is made of a semiconductor material, which is neither a particularly good conductor of 
electricity nor a particularly good insulator

A transistor has three terminals

 A source

 A base

 An emitter, typically connected to a ground wire

If the electrical signal is grounded, it is allowed to flow through 
an alternative route to the ground (literally) where it can do 
no harm





AND Gate OR Gate



Timing Diagram

A

B

F=A•B

G=A+B

H=A’

1

1

1

1
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Input
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Gate

Output

Signals

Basic 

Assumption:
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Through gates

Transitions



Gate Delay

 In actual physical gates, if one or more input changes causes the output to change, the 

output change does not occur instantaneously.

 The delay between an input change(s) and the resulting output change is the gate delay

denoted by tG:

tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns
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Introduction

 Understand the relationship between Boolean logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to form complex computer systems.

 In the latter part of the nineteenth century, George Boole suggested that logical

thought could be represented through mathematical equations.

 Computers, as we know them today, are implementations of Boole’s Laws of

Thought.

 In this chapter, you will learn the simplicity that constitutes the essence of the

machine (Boolean Algebra).



Boolean algebra

 Boolean algebra is a mathematical system for the manipulation of

variables that can have one of two values.

 In formal logic, these values are “true” and “false.”

 In digital systems, these values are “on” and “off,” 1 and 0, or “high”

and “low.”

 Boolean expressions are created by performing operations on Boolean

variables.

 Common Boolean operators include AND, OR, NOT, XOR, NAND

and NOR



 A Boolean operator can be completely described using a truth

table.

 The truth table for the Boolean operators AND, OR and NOT are

shown at the right.

 The AND operator is also known as a Boolean product.

 The OR operator is the Boolean sum.

 The NOT operation is most often designated by an over-bar. It is

sometimes indicated by a prime mark ( ‘ ) or an “elbow” ().



 A Boolean function has:

• At least one Boolean variable, 

• At least one Boolean operator, and 

• At least one input from the set {0,1}  

 It produces an output that is also a member of the set {0,1}

Now you know why the binary numbering system is so 

handy in digital systems



Conceptually

Boolean 

Algebra

Logic 

Circuit
Truth 

Table



 Digital computers contain circuits that implement Boolean functions.

 The simpler that we can make a Boolean function, the smaller the circuit 

that will result.

 Simpler circuits are cheaper to build, consume less power, and run faster 

than complex circuits.

 With this in mind, we always want to reduce our Boolean functions to their 

simplest form.

 There are a number of Boolean identities that help us to do this. 



 Most Boolean identities have an AND (product) form as well as an OR 

(sum) form.  

Properties of Boolean Algebra



 Our second group of Boolean identities should be familiar to you 

from your study of algebra:



 Our last group of Boolean identities are perhaps the most useful.

 If you have studied set theory or formal logic, these laws are also familiar to you.



 We can use Boolean identities to simplify the function:

as follows:



With respect to duality, Identities 1 – 8 have the following 

relationship:

1. X + 0 = X 2. X • 1  = X    (dual of  1)

3. X + 1  = 1 4. X • 0  = 0    (dual of  3)

5. X + X = X 6. X • X  = X   (dual of  5)

7. X + X’ = 1 8. X • X’  = 0   (dual of  8)



Algebraic Manipulation

 Boolean algebra is a useful tool for simplifying digital circuits.

 Why do it? Simpler can mean cheaper,  smaller, faster.

 Example: Simplify F = x’yz + x’yz’ + xz.
F= x’yz + x’yz’ + xz
= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz

 Example: Prove x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

 Proof: x’y’z’+ x’yz’+ xyz’
= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’



 Sometimes it is more economical to build a circuit using the complement of a 

function (and complementing its result) than it is to implement the function 

directly.

 DeMorgan’s law provides an easy way of finding the complement of a Boolean 

function.

 DeMorgan’s law states:

Complementation



 Find the complement of F(x, y, z) = x y’ z’ + x’ y z

 G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’)  DeMorgan again

 Note: The complement of a function can also be derived by finding the 

function’s dual, and then complementing all of the literals



Truth Table

 Enumerates all possible combinations of variable values 

and the corresponding function value 

 Truth tables for some arbitrary functions  

F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the right.

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

 Truth table: a unique representation of a Boolean function

 If two functions have identical truth tables, the functions 
are equivalent (and vice-versa).

 Truth tables can be used to prove equality theorems. 

 However, the size of a truth table grows exponentially with 
the number of variables involved. This motivates the use of 
Boolean Algebra.



Standard SOP and POS
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 Through our exercises in simplifying Boolean expressions, we 

see that there are numerous ways of stating the same Boolean 

expression.

These “synonymous” forms are logically equivalent.

Logically equivalent expressions have identical truth tables.

 In order to eliminate as much confusion as possible, designers 

express Boolean functions in standardized or canonical form.

Introduction



 There are two canonical forms for Boolean expressions: Sum-Of-Products 
(SOP) and Product-Of-Sums (POS).

 Recall the Boolean product is the AND operation and the Boolean sum 
is the OR operation.

 In the Sum-Of-Products form, ANDed variables are ORed together.

 For example:

 In the Product-Of-Sums form, ORed variables are ANDed together:

 For example:

SOP and POS



Definitions

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the variables appear exactly 

once, either complemented or un-complemented

 Maxterm: a sum term in which all the variables appear exactly 

once, either complemented or un-complemented



Truth Table notation for Minterms and Maxterms

 Minterms and Maxterms are easy to denote 
using a truth table.

 Example: 
Assume 3 variables x,y,z (order is fixed)

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

 Any Boolean function F( ) can be expressed as a 
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

 In other words, every function F() has two 
canonical forms:

 Canonical Sum-Of-Products (sum of 
minterms)

 Canonical Product-Of-Sums (product of 
maxterms)



Canonical Forms

 Canonical Sum-Of-Products:

The minterms included are those mj such that F( ) = 1 in row j of the truth table for F( ).

 Canonical Product-Of-Sums:

The maxterms included are those Mj such that F( ) = 0 in row j of the truth table for F( ).

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and 

m(1,2,4,6) indicates that the minterms to be included are m1, m2, m4, and m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form, 

and M(0,3,5,7) indicates that the maxterms to be included are M0, M3, M5, and M7.

• Since mj = Mj’  for any j,

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c) 



Conversion Between Canonical Forms

 Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in 

the original form with those that do not.

 Example:

f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’ 

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)
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Standard Forms 

• Standard forms are “like” canonical forms, except that not all 

variables need appear in the individual product (SOP) or sum 

(POS) terms.

• Example:

f1(a,b,c) = a’b’c + bc’ + ac’

is a standard sum-of-products form

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

is a standard product-of-sums form.



Conversion of SOP from standard to canonical form

 Expand non-canonical terms by inserting equivalent of 1 in 

each missing variable x:

(x + x’) = 1

 Remove duplicate minterms

 f1(a,b,c) = a’b’c + bc’ + ac’

= a’b’c + (a+a’)bc’ + a(b+b’)c’

= a’b’c + abc’ + a’bc’ + abc’ + ab’c’

= a’b’c + abc’ + a’bc’ + ab’c’



Conversion of POS from standard to canonical form

 Expand non-canonical terms by adding 0 in terms of missing 

variables (e.g., xx’ = 0) and using the distributive law

 Remove duplicate maxterms

 f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)•(a’+b’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)



Minimization Techniques
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Introduction

Unique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement

- For a simple function, it is possible to obtain a simple expression for 

low  cost implementation

- But, with complex functions, it is a very difficult for implementation

Truth

Table

Boolean

Function



Truth

Table

Boolean

function

Karnaugh

Map

Simplified

Boolean

Function

Karnaugh Map (K-map) is a simple procedure for simplification of

Boolean expressions.



Karnaugh Map (K-Map)

 Karnaugh maps (K-maps) are graphical
representations of Boolean functions.

 One map cell corresponds to a row in the truth
table.

 Also, one map cell corresponds to a minterm or
a maxterm in the Boolean expression

 Each term is identified by a decimal number
whose binary representation is identical to the
binary interpretation of the input values of the
term.

A’B’

A’B

AB

AB’

C’D’ C’D CD        CD’



K-Map Simplification for Two Variables 

 Of course, the Minterm function that we derived from our

Truth Table was not in simplest terms.

 That’s what we started with in this example.

 We can, however, reduce our complicated expression to its

simplest terms by finding adjacent 1s in the K-map that can

be collected into groups that are powers of two.

• In our example, we have two 

such groups.

– Can you find them?



The rules of K-map simplification are:

• Groupings can contain only 1s; no 0s.

• The number of 1s in a group must be a power of 2 – even if it 

contains a single 1.

• Nearby 1s are to be grouped.

• Corner 1s are to be grouped.

• Group that wraps around the sides of a K-map.

• Diagonal groups are not allowed.

• The groups must be made as large as possible.

• Groups can overlap.

K-Map Rules 



 The best way of selecting two groups of 1s form our simple K-

map is shown.  

 We see that both groups are powers of two and that the groups 

overlap.

K-Map Rules 



2-variable Karnaugh maps are trivial but can be used to introduce the 
methods you need to learn. The map for a 2-input OR gate looks like this:

A

B
Y

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A

B
0 1

0

1

1

11

B

A

A+B

K-Map Simplification for Two Variables 



K-Map Simplification for Three Variables 

 A K-map for three variables is constructed as shown in the diagram below.

 We have placed each Minterm in the cell that will hold its value.

 Notice that the values for the yz combination at the top of the matrix

form a pattern that is not a normal binary sequence.



 Consider the function:

F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

 Its K-map is given below.

 What is the largest group of 1s that is a power of 2?



 This grouping tells us that changes in the variables x and y have no influence upon 

the value of the function: They are irrelevant.

 This means that the function, F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

reduces to F = Z.

You could verify this 

reduction with 

Boolean Algebra



 Now for a more complicated K-map.  Consider the function:

 Its K-map is shown below. There are (only) two groupings of 1s.

 Can you find them?



 In this K-map, we see an example of a group that wraps around the 

sides of a K-map.



 == C B(0,4)f  == BA (4,5)f  == B(0,1,4,5)f  == A(0,1,2,3)f

BC
00

0

01

1

11 10A

1 0 0 0

1 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 1 0 0

BC
00

0

01

1

11 10A

1 1 1 1

0 0 0 0

BC
00

0

01

1

11 10A

1 1 0 0

1 1 0 0

 == C A(0,4)f  == CA (4,6)f  == C A(0,2)f  == C(0,2,4,6)f

BC
00

0

01

1

11 10A

0 1 1 0

0 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

0 0 0 0

f = ∑ (1,3) = A’C



K-Map Simplification for Four Variables 

 The K-map can be extended to accommodate the 16 Minterms that are 

produced by a four-input function.

 This is the format for a 16-minterm K-map.



 We have populated the K-map shown below with the nonzero minterms

from the function:

 Can you identify (only)  three groups in this K-map?



 Our three groups consist of:

 A purple group entirely within the K-map at the right.

 A pink group that wraps the top and bottom.

 A green group that spans the corners.

 Thus we have three terms in our final function:



 It is possible to have a choice as to how to pick groups within a K-map, while

keeping the groups as large as possible.

 The (different) functions that result from the groupings below are logically

equivalent.



 ••== DCB(0,8)f  ••== DCB(5,13)f  ••== DBA(13,15)f  ••== DBA(4,6)f

 •== CA(2,3,6,7)f  •== DB)(4,6,12,14f  •== CB)(2,3,10,11f  •== DB(0,2,8,10)f

CD
00

00

01

01

11

11

10

10

AB

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 1 0 0

0 1 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 0 0

0 0 0 0

0 0 1 1

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1



CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

CD
00

00

01

01

11

11

10

10

AB

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

CD
00

00

01

01

11

11

10

10

AB

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

f (4,5,6,7) A B= = • f (3,7,11,15) C D= = •
f (0,3,5,6,9,10,12,15)=  f (1,2,4,7,8,11,13,14)= 

f A B C D=    f A B C D=   

f (1,3,5,7,9,11,13,15)=  f (0,2,4,6,8,10,12,14)=  f (4,5,6,7,12,13,14,15)=  f (0,1,2,3,8,9,10,11)= 

f D= f D= f B= f B=



Don’t Care Conditions 

 Real circuits don’t always need to have an output defined for every possible 

input.

 For example, some calculator displays consist of 7-segment LEDs.  These 

LEDs can display 2 7 patterns but all patterns are not used.

 If a circuit is designed so that a particular set of inputs can never happen, we 

call this set of inputs a don’t care condition.

 They are very helpful to us in K-map circuit simplification.



 In a K-map, a don’t care condition is identified by an X in the cell of the 

minterm(s) for the don’t care inputs, as shown below.

 In performing the simplification, we are free to include or ignore the X’s 

when creating our groups.



 In one grouping in the K-map below, we have the function:

 F = W’X’ + YZ



 A different grouping gives us the function:



 The truth table of:

F (W, X, Y, Z) = W’X’ + YZ

differs from the truth table of:

 However, the values for which they differ, are the inputs for which we have 

don’t care conditions.



Redundancy



Design of combinational digital circuits

 Steps to design a combinational digital circuit:

 From the problem statement derive the truth table

 From the truth table derive the unsimplified logic expression

 Simplify the logic expression 

 From the simplified expression draw the logic circuit

 Example: Design a 3-input (A,B,C) digital circuit that will give at its 

output (X) a logic 1 only if the binary number formed at the input has 

more ones than zeros.



BCABACX ++=

A B C

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

X

0

0

0

1

0

1

1

1

Inputs Output

0

1
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7

BC
00

0
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11 10A
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C BABACAX ++=

A B C

X

= ,7,8,9)(2,3,4,5,6XA B C

0

0

0

0

0

1

X

0

0

Inputs Output

0

1

D

0

0

0 0 0 12 1

0 0 1 13 1

0 1 0 14 0

0 1 1 15 0

0 1 0 16 1

0 1 1 17 1

1 0 0 18 0

1 0 1 19 0

1 0 0 010 1

1 0 1 011 1

1 1 0 012 0

1 1 1 013 0

1 1 0 014 1

1 1 1 015 1
D

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

1 1 1 1

0 0 0 0

1 1 0 0

X

Same

 Example: Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a 

logic 1 only if the binary number formed at the input is between 2 and 9 (including).



Conclusion

 K-maps provide an easy graphical method of simplifying Boolean

expressions.

 A K-map is a matrix consisting of the outputs of the minterms of a

Boolean function.

 In this section, we have discussed 2- 3- and 4-input K-maps. This

method can be extended to any number of inputs through the use of

multiple tables.



Recapping the rules of K-map simplification:

• Groupings can contain only 1s; no 0s.

• Groups can be formed only at right angles; diagonal groups are not
allowed.

• The number of 1s in a group must be a power of 2 – even if it contains a
single 1.

• The groups must be made as large as possible.

• Groups can overlap and wrap around the sides of the K-map.

• Use don’t care conditions when you can.

• Redundancy must be reduced


