Introduction of K-Map

Karnaugh Map(K-Map) method

The K-map is a systematic way of simplifying Boolean expressions. With the help of the K-map method, we can find the simplest POS and SOP expression, which is known as the minimum expression. The K-map provides a cookbook for simplification.

Just like the truth table, a K-map contains all the possible values of input variables and their corresponding output values. However, in K-map, the values are stored in cells of the array. In each cell, a binaryvalue of each input variable is stored.

The K-map takes the SOP and POS forms. The K-map grid is filled using 0's and 1's. The K-map is solved by making groups. There are the following steps used to solve the expressions using K-map:

- First, we find the K-map as per the number of variables.
- Find the maxtermand minterm in the given expression.
- Fill cells of K-map for SOP with 1 respective to the minterms.
- Fill cells of the block for POS with o respective to the maxterm.
- Next, we create rectangular groups that contain total terms in the power of two like $2,4,8, \ldots$ and try to cover as many elements as we can in one group.
- With the help of these groups, we find the product terms and sum them up for the SOP form.

2 Variable K-map

There is a total of 4 variables in a 2-variable K-map. There are two variables in the 2 -variable K-map. The following figure shows the structure of the 2-variable K-map:

3-variable K-map

- The 3-variable K-map is represented as an array of eight cells. In this case, we used A, B, and C for the variable. We can use any letter for the names of the variables. The binary values of variables A and B are along the left side, and the values of C are across the top.

4-Variable Karnaugh Map

- The 4-variable K-map is represented as an array of 16 cells. Binary values of A and B are along the left side, and the values of C and D are across the top. The value of the given cell is the binary values of A and B at left side in the same row combined with the binary values of C and D at the top in the same column.

$A B$	00	01	11	10
00	$\bar{A} \bar{B} \bar{C} \bar{D}$	$\bar{A} \bar{B} \bar{C} D$	$\bar{A} \bar{B} C D$	$\bar{A} \bar{B} C \bar{D}$
01	$\bar{A} B \bar{C} \bar{D}$	$\bar{A} B \bar{C} D$	$\bar{A} B C D$	$\bar{A} B C \bar{D}$
11	$A B \bar{C} \bar{D}$	$A B \bar{C} D$	ABCD	$A B C \bar{D}$
10	$A \bar{B} \bar{C} \bar{D}$	$A \bar{B} \bar{C} D$	$A \bar{B} C D$	$A \bar{B} C \bar{D}$

PROBLEMS BASED ON KARNAUGHMAP

- Minimize the following boolean function-
- F $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(\mathrm{o}, 1,3,5,7,8,9,11,13,15)$

Solution-

- Since the given boolean expression has 4 variables, so we draw a 4×4 K Map.
- We fill the cells of K Map in accordance with the given boolean function.
- Then, we form the groups in accordance with the above rules.

F(A, B, C, D)
$=\left(A^{\prime} B^{\prime}+A^{\prime} B+A B+A B^{\prime}\right)\left(C^{\prime} D+C D\right)+\left(A^{\prime} B^{\prime}+A B^{\prime}\right)\left(C^{\prime} D^{\prime}+C^{\prime} D\right)$ $=D+B^{\prime} C^{\prime}$

Thus, minimized boolean expression is$F(A, B, C, D)=B^{\prime} C^{\prime}+D$

