Biomolecules

An organic molecule is a complex molecule that is primarily made of carbon atoms bonded with other elements and/or other carbon atoms. All living things on Earth are composed of organic molecules.

Biomolecules - Definition, types, structure, properties and its applications

Definition of Biomolecule: An organic compound normally present as an essential component of living organism.

IMPORTANT BIOMOLECULES

Characteristics of Biomolecules: -

- 1) Most of them are organic_compounds.
- 2) They have specific shapes and dimensions
- 3) Functional group determines their chemical properties.
- 4) Many of them are asymmetric
- Macromolecules are large molecules and are constructed from small building block molecules.
- 6) Building block molecules have simple structure.
- 7) Biomolecules first gorse by chemical evolution.

Important Biomolecules of life

- i) Water Being the universal solvent and major constituents (60%) of any living body without which life is impossible. It acts as a media for the physiological and biochemical reactions in the body itself. Maintain the body in the required turgid condition.
- Carbohydrates It is very important for source of energy for any physical body function
- Proteins These are very important from body maintenance point of view, helps in tissue, cell formation.
- 4) **Lipids:** These are very important from energy source as well as human nutrition point of view.
- Nucleic acids Nucleic acids are very important as DNA carries the hereditary information and RNA helps in protein formation for the body.
- 6) Enzymes Enzymes are simple or combined proteins acting as specific catalysts and activate the various biochemical and metabolic processes within the body.

Table - Fundamental Biological molecules (Biomolecules)

Sr.	Small molecules	Atomic constituents	Derived macro-molecules
1.	Amino acid	C, H, O, N (S)	Proteins
2	Sugars	C, H,O	Starch, glycogen
3.	Fatty acids	C, H, O	Fats, oils
4.	Purines and pyrimidine	C, H, O, N	Nucleic acids
5.	Nucleotide	C, H, O, N, P	Nucleic acids (DNA and RNA)

Common Fun	ctional Groups Found in	Biomolecules			
Name	Functional Group	Compounds			
Aldehyde	R-C-H	Carbohydrates			
Amide	R-C-N-R'	Proteins			
Amino	R-NH ₂	Amino acids, proteins	Ether	R-0-R'	Disaccharides, polysaccharides, lipids
Carbonyl	R R'	Ketones, aldehydes, carboxylic acids, amides	Hydroxyl	R-O-H	Alcohols, monosaccha amino acids, nucleic ad
Carboxylic acid	0 II R-С-О-Н	Amino acids, proteins, fatty acids	Ketone	R-C-R'	Carbohydrates
Ester	R-C-0-R'	Lipids, nucleic acids	Methyl	R-CH ₃	Methylated compounds such as methyl alcohol methyl esters
			Phosphate	R-PO ₃ H ₂	Nucleic acids, phospho ATP
			Sulfhydryl	R-S-H	Amino acids, proteins

^{*}Functional groups are represented in pink. Ketone and aldehyde both contain a carbonyl group, highlighted in blue.

Figure 7.1.5: Functional groups.

Carbohydrates - Definition, functions, classifications, structure and Properties of Monosaccharide and Disaccharides.

Definition of carbohydrates :

Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones and the substances which yield these derivatives on hydrolysis.

Functions of Carbohydrates

- Supply energy
- ii) Stored energy for future use
- iii) Structural constituents
- iv) Proteins sparing action
- v) Necessary for oxidation of protein and fat
- vi) Necessary for synthesis of non essential amino acids.
- vii) Conserve water and electrolyte
- viii) Beneficial effect on microflora.

Classification of carbohydrates

Carbohydrates are classified in to three major classes on the basis of complexity and behaviour on hydrolysis

- 1) Monosaccharides
- 2) Oligosaccharides
- 3) Polysaccharides

Monosaccharides: Simple sugars and cannot be hydrolysed into smaller units. Depending upon no. of carbon in a unit, monosaccharides are subdivided into a dioses to decoses. More common subclasses of monosaccharides are: Based on the functional group, they are classified as aldoses and ketoses

1) depending on whether they have aldehyde or ketone as functional group

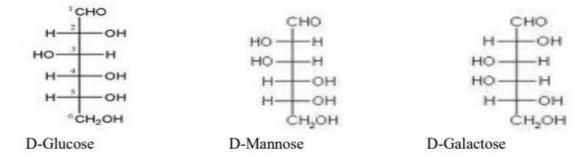
	Aldoses	Ketoses
Triose	Glyceraldehyde	Dihydroxy acetone
Tetrose	Erythrose	Erythrose
Pentose	Ribose, Xylose, Arabinose	Ribulose, Xylulose
Hexose	Glucose, Galactose,	Fructose
	Mannose	
Heptose	-	Heptulose

Aldoses - Aldotrioses - e.g. Glycerose, Aldotertroses - e.g. Erythrose, Aldopentoses - e.g. Ribose Aldohexoscs - e.g. glucose, galatose Aldoheptose - glucoheptose.

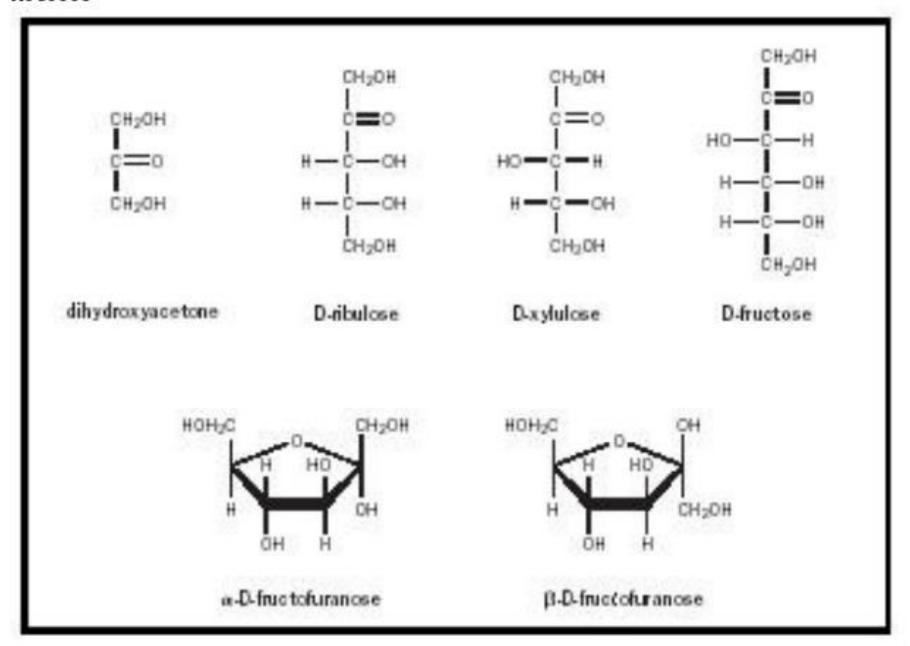
Ketoses - Ketotrioses – e.g Dihydroxyacetone **ketotetroses** – e.g erythrulose, **ketopentoses -** e.g Ribulose, **Ketohexoses**, e.g. Fructose, **Ketoheptose** e.g. Scdoheptulose.

Explain structure of triose tetrose, pentose and hexoses only

Aldoses


D-Glyceraldehyde

D- Erythrose


D-Ribose

D-Xylose

D-Arabinose

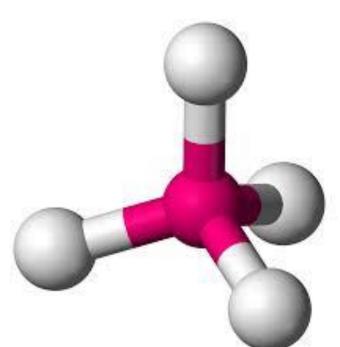
Ketoses

- 2.Olignsaccharide:- Definition Oligosaccharides are polymers of monosaccharides containing two to ten residues accumulate in vacuole while polysaccharides in plastids, they are classified as
- a) Disaccharides yield two monosaccharides on hydrolysis.
- i) Reducing disaccharides e.g. Maltose (Glucose + glucose),
 Lactose (galactose + glucose), Other examples are Isomaltose, cellobiose.
- ii) Non reducing disaccharides Sucrose (glucose + Fructose)
- b) Trisaccharides e.g. Raffinose (Glucose + Fructose + galactose) found in cotton seed and sugar beet.
- c) Tetrasaccharides yield 4 monosaccharides on hydrolysis e.g. stachyose (glucose + Fructose + galactose + galactose) (only tetrasaccharide known to exist in plant).

3. Polysaccharides:

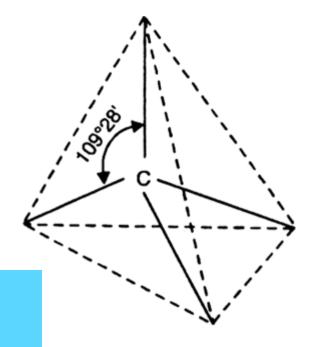
Definition of Polysaccharides

Polysaccharides are polymeric anhydrides of monosaccharides. The long chain polymers are either straight chain or branched. They are also called glycanes.

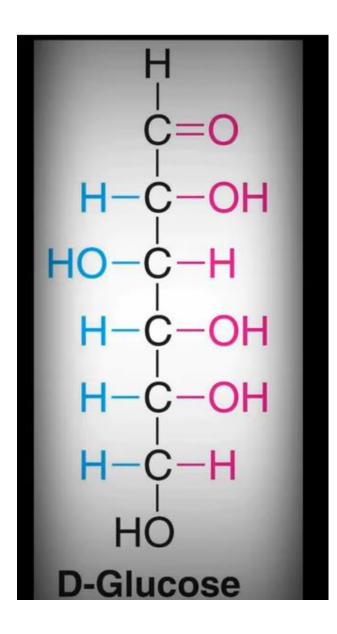

Classification of Polysaccharides

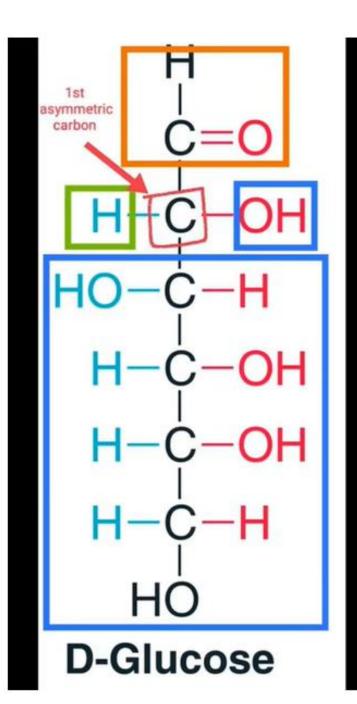
1) On the basis of function

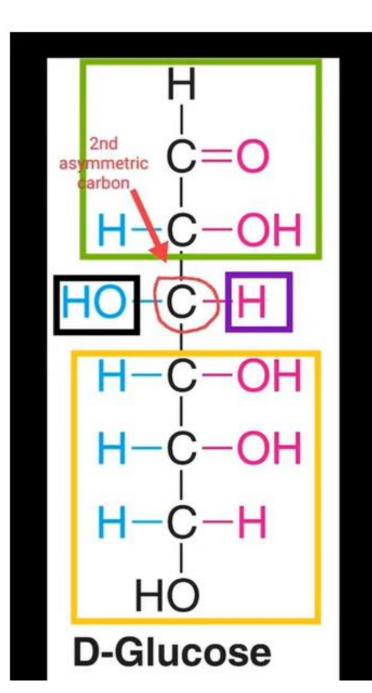
- 2) On the basis of composition
- a) **Storage** e.g. Starch, glycogen
- a) Homopolysaccharides
- b) Structural e.g. Cellulose, Pectins. b) Heteropolysaccharides.
- a) Homopolysaccharides on hydrolysis gives single monosaccharide units
- i) Pentosan contains pentoses (C₅ H₈ O₄).
- ii) Hexosans Contains hexoses (C₆ H₁₀ O₅) subdivided in to
- A) Glucosans Polymer or glucose e.g. starch, glycogen
- B) Fructosans Polymer or fructose e.g. inulin
- C) Galactans polymer of galactose e.g. Galactan
- D) Mannans Polymer of mannose e.g. Mananas.
- b) Heteropolysaccharide e.g. Hyaluronic acid, Chondroitin sulphates.
- A) Gum Consist of arabinose, rhamnose, galactose and glucoronic acid.
- B) Agar The sulphuric acid esters of galactans consists of galactose, galactouronic acid.
- C) Pectins Fundamental unit is pectic acid, consist of arabinosc, galactose, galactouronic acid.

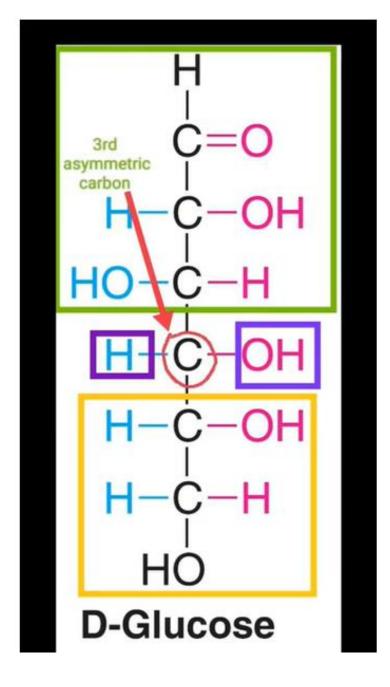

Functions of Polysaccharides

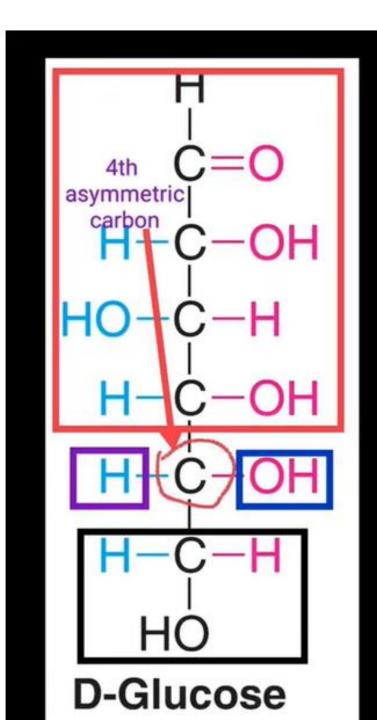
- 1) They serve as structural components of the cells
- 2) They serve as stored form of energy
- 3) They serve as nutrient.

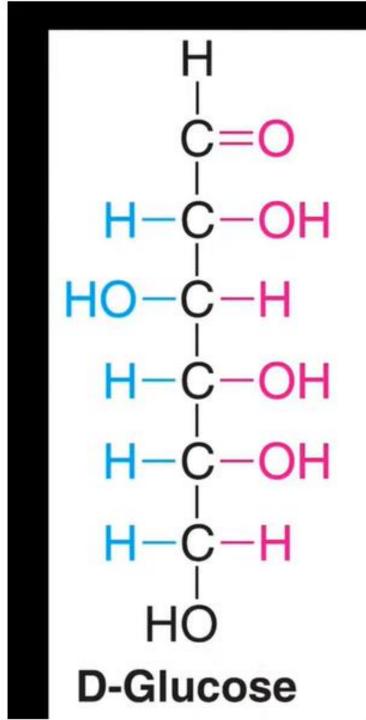

Carbon tetrahedron






ASYMMETRY


A carbon atom to which 4 different atoms or groups of atoms are attached is called asymmetric



In glucose2-5 carbonatoms areasymmetric

THANK YOU