

LECTURE-18

FRIENDLY FUNCTIONS:-

We know private members can not be accessed from outside the class. That is a non -

member function can't have an access to the private data of a class. However there could be a

case where two classes manager and scientist, have been defined we should like to use a function

incometax to operate on the objects of both these classes.

In such situations, c++ allows the common function lo be made friendly with both the classes ,

there by following the function to have access to the private data of these classes .Such a

function need not be a member of any of these classes.

To make an outside function "friendly" to a class, we have to simply declare this function as a

friend of the classes as shown below :

class ABC

{

--------- ---

public:

friend void xyz(void);

 };

The function declaration should be preceded by the keyword friend , The function is defined else

where in the program like a normal C ++ function . The function definition does not use their the

keyword friend or the scope operator :: . The functions that are declared with the keyword friend

are known as friend functions. A function can be declared as a friend in any no of classes. A

friend function, as though not a member function , has full access rights to the private members

of the class.

A friend function processes certain special characteristics:

a. It is not in the scope of the class to which it has been declared as friend.

b. Since it is not in the scope of the class, it cannot be called using the object of that

class. It can be invoked like a member function without the help of any object.

c. Unlike member functions.

 Example:

#include<iostream.h>

class sample

{ int a;

int b;

public:

void setvalue() { a=25;b=40;}

friend float mean(sample s);

}

float mean (sample s)

{ return (float(s.a+s.b)/2.0);

}

int main ()

 {

sample x;

x .

setvalue(

);

cout<<”mean value=”<<mean(x)<<endl;

return(0);

}

output:

mean value : 32.5

A function friendly to two classes

#include<iostrea

m.h>

class abc;

class xyz

{ int x;

public:

void setvalue(int x) { x-= I; }

friend void max (xyz,abc);

};

clas

s

abc

{ int a;

public:

void setvalue(int i) {a=i; }

friend void max(xyz,abc);

};

void max(xyz m, abc n)

{ if(m . x >= n.a)

cout<<m.x;

else cout<<

n.a;

}

int main()

{ abc j; j .

setvalue(

10); xyz s;

s.setvalue(20);

max(s , j);

return(0);

}

SWAPPING PRIVATE DATA OF CLASSES:

#include<iostream.h>

 class class-2; class class-1

{

int value 1;

public:

void indata(int a) { value=a; } void

display(void) { cout<<value<<endl; } friend

void exchange (class-1 &, class-2 &); };

class class-2

{ int value2;

public:

void indata(int a) { value2=a; } void

display(void) { cout<<value2<<endl; }

friend void exchange(class-l & , class-2

&);

}; void exchange (class-1

&x, class-2 &y)

{ int temp=x. value 1;

x. value I=y.valuo2;

y.value2=temp;

}

int main()

{ class-1

c1; class-2

c2;

c1.indata(l

00);

c2.indata(

200);

cout<<”values before exchange:”<<endl;

c1.display();

c2.display();

exchange (c1,c2);

cout<<”values after exchange :”<< endl;

c1.

display (

); c2.

display (

);

return(0);

}

output:

values before exchange

100

200

values after

exchange

200

100

PROGRAM FOR ILLUSTRATING THE USE OF FRIEND FUNCTION:

#include<

iostream.h> class

account1; class

account2

{ private: int

balance;

public: account2() {

balance=567; } void

showacc2()

{

cout<<”balanceinaccount2 is:”<<balance<<endl;

friend int transfer (account2 &acc2, account1 &acc1,int amount);

};

class

acount1

{ private: int

balance;

public:

account1 () { balance=345; }

void showacc1 ()

{

cout<<”balance in account1 :”<<balance<<endl;

}

friend int transfer (account2 &acc2, account1 &acc1 ,int

amount); };

int transfer (account2 &acc2, account1 & acc1, int amount)

{ if(amount <=accl . bvalance)

{ acc2. balance + =

amount; acc1

.balance - = amount;

}

else return(0); } int main()

{ account1 aa;

account2 bb;

cout << “balance in the accounts before

transfer:” ; aa . showacc1(); bb . showacc2();

cout << “amt transferred from account1 to account2 is:”;

cout<<transfer (bb,aa,100)<<endl;

cout<< “ balance in the accounts after the

transfer:”; aa . showacc 1 (); bb. showacc 2();

 return(0);

} output:

balance in the accounts before

transfer balance in

account 1 is 345 balance

in account2 is 567

and transferred from account! to account2 is

100 balance in account 1 is 245

balance in account2 is 667

