Immunity

- Nonspecific immune response
 - Aka nonspecific resistance, innate, or natural immunity
 - acts as a first line of defense
 - offers resistance to any microbe or foreign material
 - lacks immunological memory
- Specific immune response
 - Aka acquired, adaptive, or specific immunity
 - resistance to a particular foreign agent
 - has "memory"
 - effectiveness increases on repeated exposure to agent

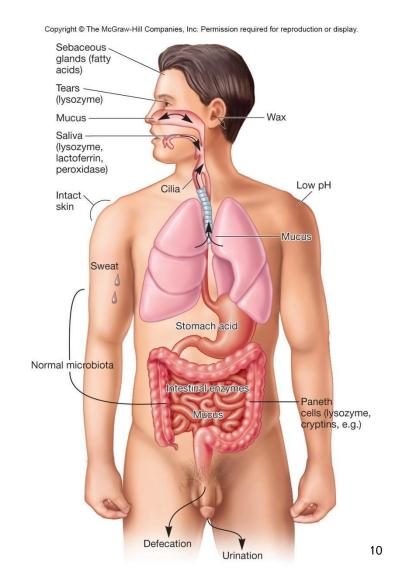
Host Defenses Innate and nonspecific Acquired and specific Physical Chemical Discrimination, Cells, Cells, Memory self/nonself tissues barriers mediators tissues Granulocytes Skin **Defensins** T cells Macrophages Mucous Lysozyme Dendritic and B cells membranes Complement NK cells Opsonization Resident responders Inflammation Cell cooperation

2

Antigens

- Recognized as foreign
- Invoke immune responses
 - presence of antigen in body ultimately results in B cell activation → → production of antibodies
 - antibodies bind to specific antigens, inactivating or eliminating them
 - other immune cells also become activated
- Name comes from antibody generators

White Blood Cells of Innate and Adaptive Immunity

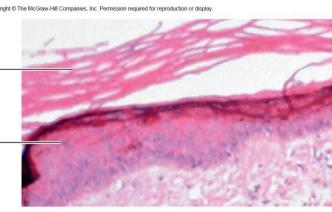

- White blood cells (WBCs) play a major role in the innate and specific responses
- Hematopoesis
 - development of white blood cells in bone marrow of mammals
 - WBCs that mature prior to leaving bone marrow, e.g., macrophages and dendritic cells, become part of innate immune system and will respond to all antigens
 - WBCs that are mature but not yet activated after leaving bone marrow become part of the adaptive immune response, e.g., B and T cells and could differentiate in response to specific antigens

33.2 Physical and Mechanical Barrier Defenses of Innate Resistance

- Identify the barriers that help prevent microbial invasion of the host
- 2. Explain how the physical and chemical barriers function to prevent microbial invasion of the host
- Relate host anatomy and secretions to the success of innate resistance strategies

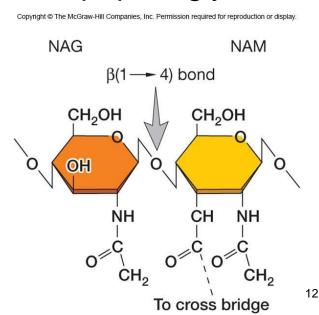
Physical Barriers in Nonspecific (Innate) Resistance

- Effectiveness impacted by:
 - direct factors
 - nutrition, physiology, fever, age, and genetics
 - indirect factors
 - personal hygiene, socioeconomic status, and living conditions
- Along with host's secretions (flushing), barriers = first line of defense against microbes


Skin

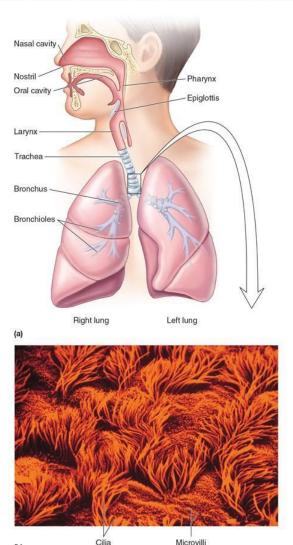
- Strong mechanical barrier to microbial invasion
 - keratin produced by keratinocytes in outer layer
- Inhospitable environment for microbes
 - attached organisms removed by shedding of outer skin cells

Stratified epithelium


Connective tissue

- pH is slightly acidic
- high NaCl concentration
- subject to periodic drying

Mucous Membranes


- Form protective covering that resists penetration and traps many microbes
- Are often bathed in antimicrobial secretions which contain a variety of antimicrobial substances
 - lysozyme
 - hydrolyzes bond connecting sugars in peptidoglycan
 - lactoferrin
 - secreted by activated macrophages and PMNs
 - sequesters iron from plasma
 - lactoperoxidase
 - produces superoxide radicals

Respiratory System

- Turbulent air flow deposits microbes onto mucosal surfaces
- Mucociliary blanket
 - mucous secretions trap microbes
 - once trapped, microbes
 transported away from the lungs
 (mucociliary escalator)
 - expelled by coughing or sneezing
 - salivation washes microbes to stomach
- Alveolar macrophages
 - phagocytic cells in alveoli of lungs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Ellen R. Dirksen/Visuals Unlimited

Gastrointestinal Tract

- Stomach
 - gastric acid
- Intestines
 - pancreatic enzymes
 - bile
 - intestinal enzymes
 - GALT
 - peristalsis

- Intestines
 - shedding of columnar epithelial cells
 - secretory IgA
 - normal microbiota
 - Paneth cells
 - produce lysozyme
 - produce cryptins

Genitourinary Tract

- Unfavorable environment for foreign microbes
 - low pH of urine and vagina
 - vagina has lactobacilli
 - urea and other toxic metabolic end products in urine
 - hypertonic nature of kidney medulla
- Flushing with urine and mucus
- Distance barrier of male urethra

The Eye

- Mucus secreting epithelial membrane
- Flushing action of tears
- Lysozyme, lactoferrin, and secretory IgA in tears

33.3 Chemical Mediators in Innate Resistance

- 1. Discuss host mediators that have antimicrobial actions
- 2. Describe in general terms the activation of the host complement system and its three outcomes
- List the four categories of cytokines and discuss their major functions
- 4. Correlate host protection from microbial invasion with specific mediators

Chemical Mediators in Nonspecific (Innate) Resistance

- Many already noted (e.g., gastric juices, lysozyme, urea)
- A variety of defensive chemicals such as defensins and other polypeptides are also found in blood, lymph, and other body fluids

Antimicrobial Peptides

- Cationic peptides
 - highly conserved through evolution
 - three classes whose biological activity is related to their ability to damage bacterial plasma membranes
 - first class: linear, alpha-helical peptides that lack cysteine amino acid residues
 - e.g., cathelicidin, produced by a variety of cells

Cationic Peptides...

- Second class: defensins
 - peptides that are open-ended, rich in arginine and cysteine, and disulfide linked
 - found in neutrophils, intestinal Paneth cells and intestinal and respiratory epithelial cells
- Third class: larger peptides that are enriched for specific amino acids and exhibit regular structural repeats
 - e.g., histatin, present in human saliva and has anti-fungal activity

Bacteriocins

- Peptides produced by normal microbiota
- Lethal to related species
- Produced by Gram-positive and Gramnegative cells
- e.g., colicins produced by *E. coli*
- e.g., lantibiotics produced by Gram-positive bacteria

The Complement System

- Composed of >30 serum proteins
- Augments (or "complements") the antibacterial activity of antibody
- Three major activities:
 - defending against bacterial infections
 - bridging innate and adaptive immunity
 - disposing of wastes

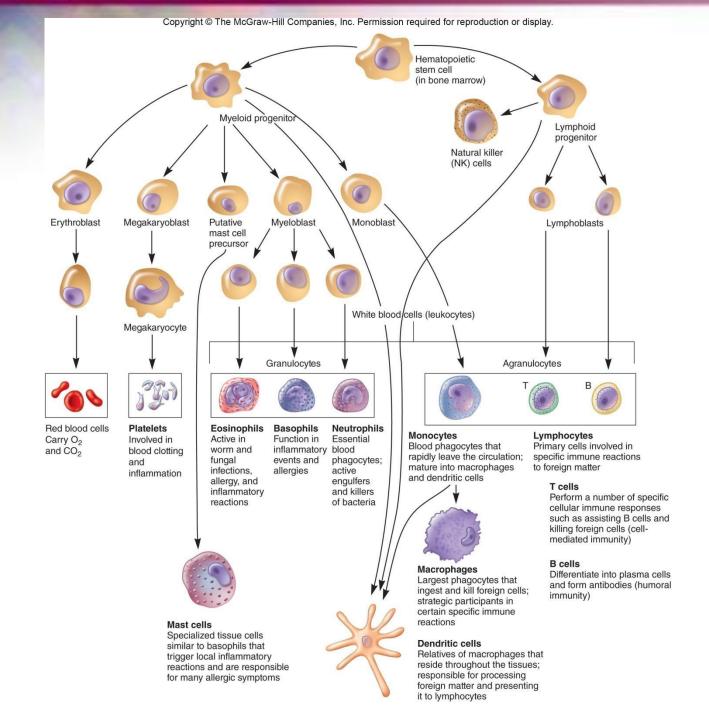
Opsonization

- Process in which microbes are coated by serum components (opsonins) in preparation for recognition/ingestion by phagocytic cells
- Some complement proteins are opsonins
 - bind to microbial cells, coating them for phagocyte recognition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Section 2 was a service and the service substitution and service applications and an expension and application and an expension and an expensi		
Phagocytic cell	Degree of binding	Opsonin
(a) Fc receptor	+	Antibody
(b) C3b receptor	++	Complement C3b
(c)	++++	Antibody and complement C3b

Other Functions of Complement Proteins


- Function as chemotactic signals that recruit phagocytes to their activation site
- Puncture cell membranes causing cell lysis
- Many complement activities unite the nonspecific and specific arms of the immune system to destroy and remove invading pathogens

33.4 Cells, Tissues, and Organs of the Immune System

- Recognize the different types of leukocytes involved with innate resistance
- 2. Outline the leukocyte response to microbial invasion
- Integrate leukocyte distribution within the host with host resistance
- 4. Differentiate between primary and secondary lymphoid organs and tissues in terms of structure and function
- Predict connections between innate host resistance and specific immune responses

Cells of the Immune System

- Granulocytes
- Mast cells
- Monocytes and macrophages
- Dendritic cells
- Lymphocytes
- Each has specialized role in defending host
- Leukocytes
 - white blood cells
 - involved in both specific and nonspecific immunity
 - all arise from pluripotent stem cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.4 Normal Adult Blood Count		
Cell Type	Cells/mm ³	Percent WBC
Red blood cells	5,000,000	
Platelets	250,000	
White blood cells	7,400	100
Neutrophils	4,320	60
Lymphocytes	2,160	30
Monocytes	430	6
Eosinophils	215	3
Basophils	70	1

Mast Cells

- Bone marrow-derived cells
- Differentiate in blood and connective tissue
- Contain granules containing histamine and other pharmacologically active chemicals
- Play important role in development of allergies and hypersensitivities

Granulocytes

- Irregularly-shaped nuclei with two to five lobes
- Cytoplasm has granules with reactive substances
 - kill microbes, enhance inflammation
- Three types
 - basophils, eosinophils, neutrophils
 (polymorphonuclear neutrophil (PMN))

Basophils

- Stain bluish-black with basic dyes
- Nonphagocytic
- Release vasoactive mediators
 - e.g., histamine, prostaglandins, serotonin, and leukotrienes from granules
- Play important role in development of allergies and hypersensitivities

Eosinophils

- Stain red with acidic dyes
- Defend against protozoan and helminth parasites
- Release cationic proteins and reactive oxygen metabolites
- May play a role in allergic reactions

Neutrophils


- Stain at neutral pH
- Highly phagocytic
- Circulate in blood then migrate to sites of tissue damage
- Kill ingested microbes with lytic enzymes and reactive oxygen metabolites contained in primary and secondary granules

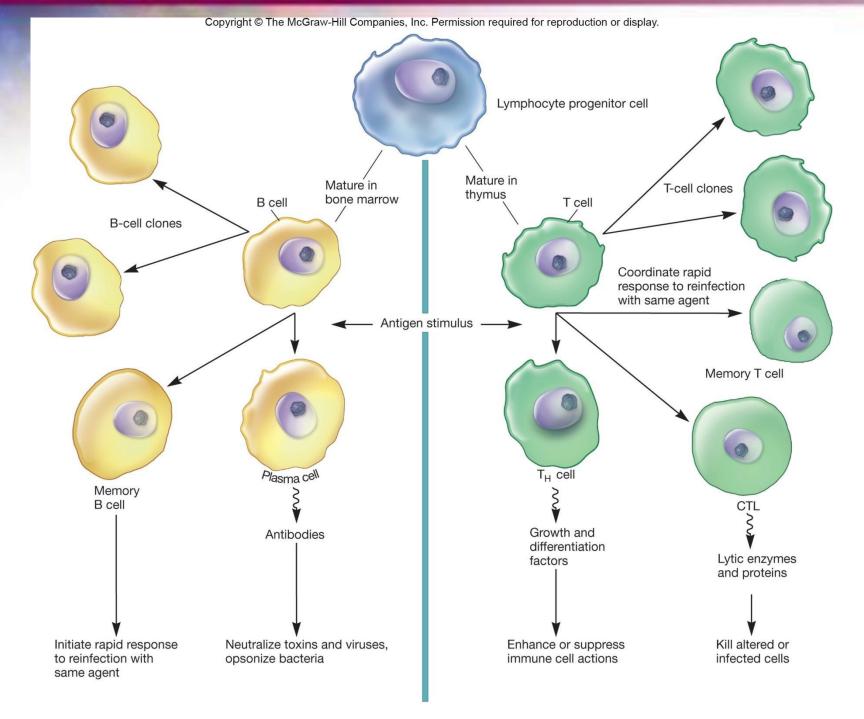
Monocytes and Macrophages

- Highly phagocytic cells
- Monocytes
 - are mononuclear phagocytic leukocytes
 - after circulating for ~8 hours, mature into macrophages
- Macrophages
 - larger than monocytes, reside in specific tissues, highly phagocytic
 - have a variety of surface receptors (including pattern recognition receptors)
 - bind pathogen associated molecular patterns (PAMPs)
 - named according to tissue in which they reside

Dendritic Cells

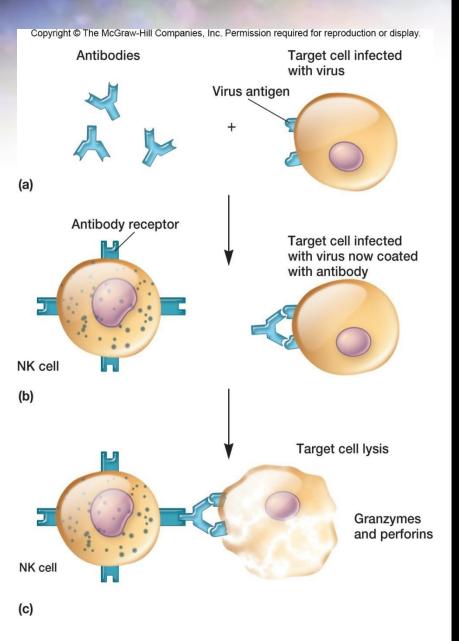
- Heterogeneous group of cells with neuron-like appendages
 - from lymphoid and myeloid lines
- Present in small numbers in blood, skin, and mucous membranes of nose, lungs, and intestines
 - also express pattern recognition receptors
 - contact, phagocytose, and process antigens → display foreign antigens on their surfaces (antigen presentation)

Lymphocytes


- Major cells of the immune system
- Major populations include T cells, B cells, and natural killer (NK) cells
- B and T lymphocytes differentiate in bone marrow from stem cells
 - are only activated by binding of specific antigen onto lymphocyte surface receptors
 - after activation replication continues as lymphocytes circulate and enter lymphoid tissue
 - memory cells are activated lymphocytes that do not immediately replicate, but will do so later in host's life when antigen is again present

B Lymphocytes

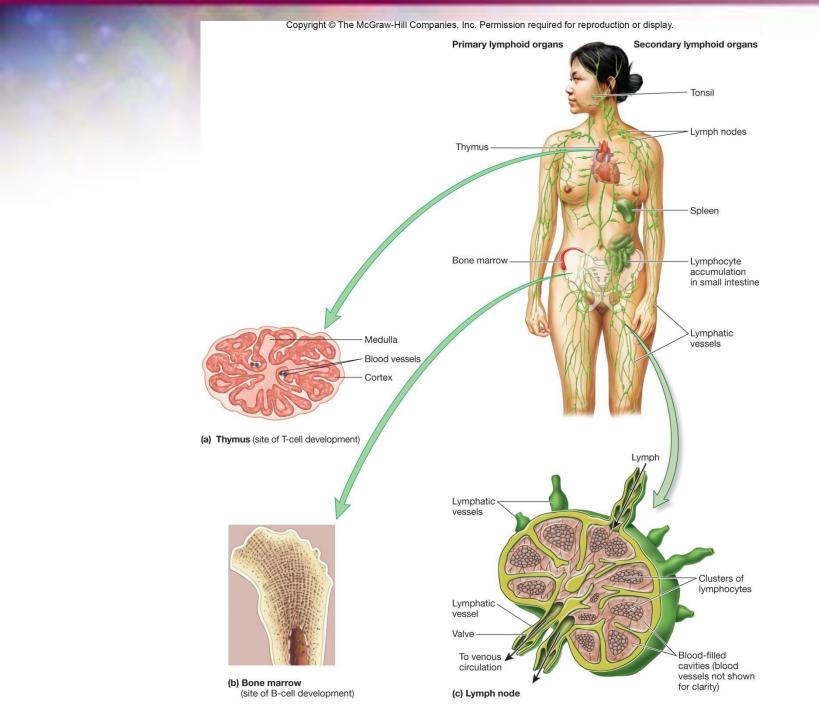
- B cells (B lymphocytes)
 - mature in bone marrow
 - circulate in blood
 - can settle in lymphoid organs
 - after maturation and activation are called plasma cells and produce antibodies


T Lymphocytes (T cells)

- Mature in thymus
- Can remain in thymus, circulate in blood, or reside in lymphoid tissue
- Like B cells, require antigen binding to surface receptors for activation and continuation of replication
- Activated T cells differentiate into helper T cells (TH) and cytotoxic lymphocytes (CTLs)
- Secrete cytokines, chemicals that have effects on other cells, are produced and secreted by activated T cells

Natural Killer (NK) Cells

- Small population of large non-phagocytic granular lymphocytes
 - important role in innate immunity
 - kill malignant cells and cells infected with pathogens by releasing granzymes (cytotoxic enzymes)
- Two ways of recognizing target cells
 - bind to antibodies which coat infected or malignant cells (antibody-dependent cell-mediated cytotoxicity (ADCC)
 - recognizes cells that have lost their class I major histocompatibility antigen due to presence of virus or cancer



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Organs and Tissues of the Immune System

- Primary organs and tissues
 - sites where lymphocytes mature and differentiate into antigen-sensitive mature B and T cells
- Secondary organs and tissues
 - areas where lymphocytes may encounter and bind antigen
 - followed by proliferation and differentiation into fully mature effector cells

Primary Lymphoid Organs and Tissues

Thymus

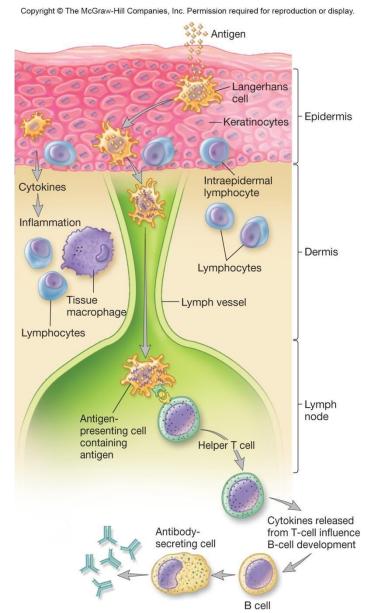
- precursor cells move enter from bone marrow and proliferate
- thymic deletion removes T cells recognizing self antigens
- remaining cells become mature T cells
- enter bloodstream and recognize nonself antigens
- Bone marrow
 - site of B cell maturation in mammals
 - maturation involves removal of nonfunctioning and self-reactive cells

Secondary Lymphoid Organs and Tissues

- Spleen
 - most highly organized lymphoid organ
 - filters blood
 - macrophages and dendritic cells trap microbes and antigens
 - present antigens to B and T cells
 - most common way that lymphocytes become activated to carry out their immune functions

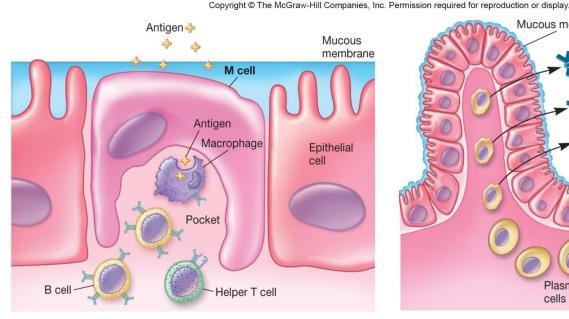
Secondary Lymphoid Organs and Tissues

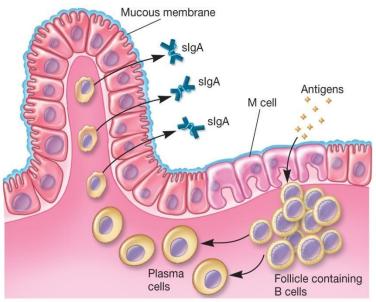
- Lymph nodes
 - most highly organized lymphoid tissue
 - filter lymph
 - microbes and antigens trapped and phagocytosed by macrophages and dendritic cells
 - B cells differentiate into memory and plasma cells within lymph nodes


Secondary Lymphoid Organs and Tissues

- Lymphoid tissue
 - located throughout the body
 - serve as interface between innate and acquired host immunity
 - act as areas of antigen sampling and processing
 - some lymphoid cells are found closely associated with specific tissues
 - e.g., skin-associated lymphoid tissue (SALT)
 - e.g., mucous-associated lymphoid tissue (MALT)

Skin Associated Lymphoid Tissue


(SALT)


- Contains specialized cells
 - Langerhans cell
 - dendritic cell that can phagocytose antigens
 - differentiates into interdigitating dendritic cell – presents antigen to and activates T cells
 - intraepidermallymphocyte
 - function as T cells

Mucosal-Associated Lymphoid Tissue (MALT)

- Specialized immune barrier
 - gut-associated lymphoid tissue (GALT)
 - bronchial-associated lymphoid tissue (BALT)
 - urogenital system MALT

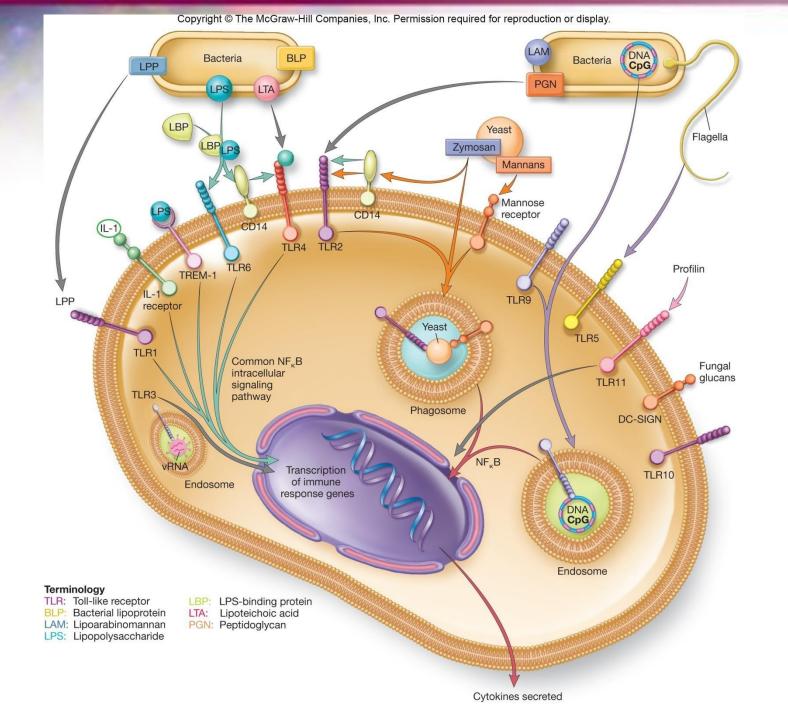
33.5 Phagocytosis

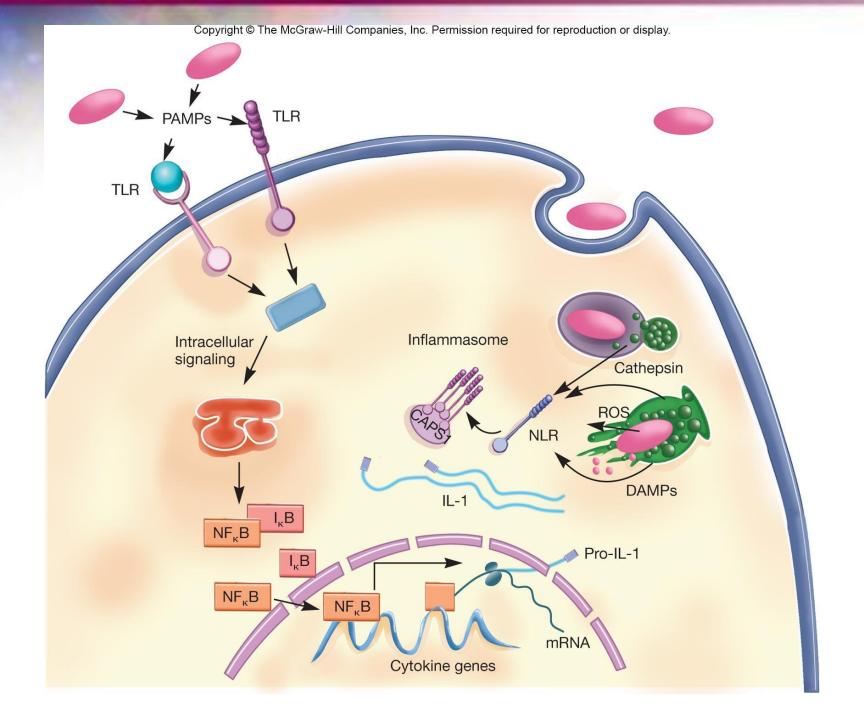
- 1. Explain the methods by which pathogens are recognized by phagocytes
- 2. Describe the process of autophagy and phagocytosis
- Forecast how biochemical activities within the phagocyte result in pathogen destruction

Phagocytosis

- Process by which phagocytic cells (monocytes, tissue macrophages, dendritic cells, and neutrophils) recognize, ingest, and kill extracellular microbes
- Two mechanisms for recognition of microbe by phagocyte
 - opsonin-independent (nonopsonic) recognition
 - opsonin-dependent (opsonic) recognition
- Phagocytosis can be greatly increased by opsonization

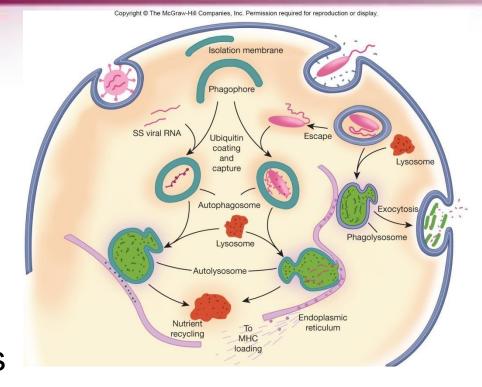
Pathogen Recognition


- Opsonin-independent mechanism
 - pathogen recognition
 - common pathogen components are non-specifically recognized to activate phagocytes
 - signaling mechanism involved
 - involves nonspecific/specific receptors on phagocytes
 - four main forms:
 - recognition by lectin-carbohydrate interactions
 - recognition by protein-protein interactions
 - recognition by hydrophobic interactions
 - detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs)


Pathogen-Associated Molecular Patterns (PAMPs)

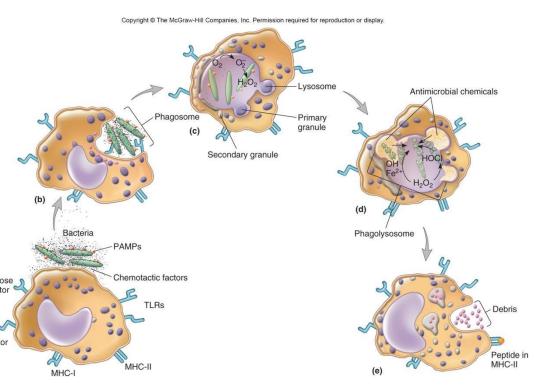
- Based on detection, by phagocytes, of conserved microbial molecular structures that occur in patterns
- PAMPs are unique to microbes, not present in host
 - e.g., lipopolysaccharide (LPS) of Gram-negative bacteria
 - e.g., peptidoglycan of Gram-positive bacteria
- PAMPs recognized by pattern recognition receptors (PRRs) on/in phagocytic cells
 - PRRs can work alone or together to trigger phagocytes

Toll-Like Receptors (TLRs)


- A class of PRRs that function exclusively as signaling receptors
- Recognize and bind unique PAMPs of viruses, bacteria, or fungi
 - the binding triggers an evolutionarily ancient signal and is communicated to the host cell nucleus which initiates the host response

Intracellular digestion

- Autophagy
 - Highly conserved process
 - Tags internal microbes for destruction
 - Ubiquitin protein labels item
 - Phagophore (free-floating, open membrane) encircles item
 - Autophagosome is fused with lysosome to degrade contained items



Intracellular Digestion

 Once bound, microbes can be internalized and delivered to a lysosome to become a phagosome

respiratory burst
 reactions occur once
 phagosome forms

toxic oxygen
 products are
 produced which can kill invading microbes

Intracellular Digestion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.5 Formation of Reactive Oxygen Intermediates	
Oxygen Intermediate	Reaction
Superoxide (O ₂ •)	NADPH oxidase $ 2O_2 \xrightarrow{\bullet} + H^+ + NADP^+ $
Hydrogen peroxide (H ₂ O ₂)	Superoxide $2O_{2}^{-} + 2H^{+} \xrightarrow{\text{dismutase}} H_{2}O_{2} + O_{2}$
Hypochlorous acid (HOCI)	$H_2O_2 + CI^- \xrightarrow{\text{Myeloperoxidase}} HOCI + OH^+$
Singlet oxygen (¹ O ₂)	$CIO^{-} + H_2O_2 \xrightarrow{Peroxidase} {}^{1}O_2 + CI^{-} + H_2O$
Hydroxyl radical (•OH ⁻)	$O_2^- + H_2O_2 \xrightarrow{\text{Peroxidase}} 2 \cdot OH^- + O_2$

- phagolysosome
- vacuole which results from fusion of phagosome with lysosome
 - presence of toxic chemicals
 - e.g., degradative enzymes
 - e.g., toxic reactive oxygen intermediates (ROIs)
 - e.g., reactive nitrogen intermediates (RNIs)

74

Exocytosis

- Process used by neutrophils to expel microbial fragments after they have been digested
- Phagolysosome unites with cell membrane
 - results in extracellular release of microbial fragments
- Macrophages and dendritic cells undergo process called antigen presentation
 - move fragments from phagolysosome to endoplasmic reticulum
 - peptide fragment components combine with glycoproteins, becoming part of cell membrane
 - peptides bound so they are ultimately presented outward from the cell

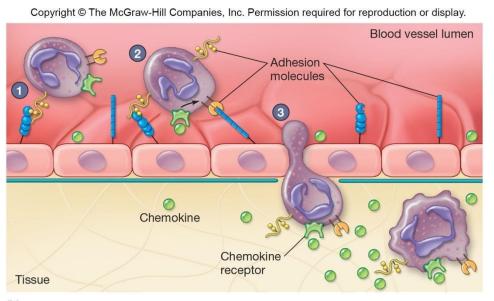
Antigen Presentation

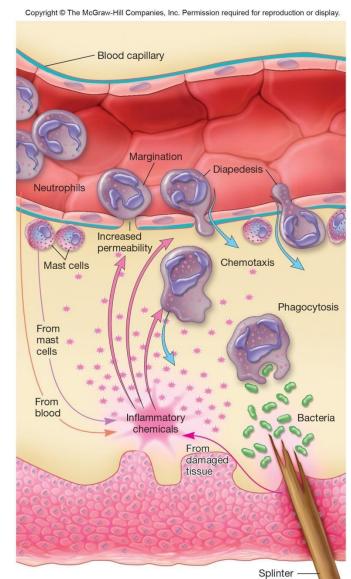
- Important process because it allows wandering lymphocytes to become activated
- Links nonspecific and specific immune responses

33.6 Inflammation

- 1. Outline the sequence of innate host responses that result in inflammation
- Distinguish acute and chronic inflammation in terms of the host responses involved in each
- Construct a concept map relating host cells and processes that remove pathogens

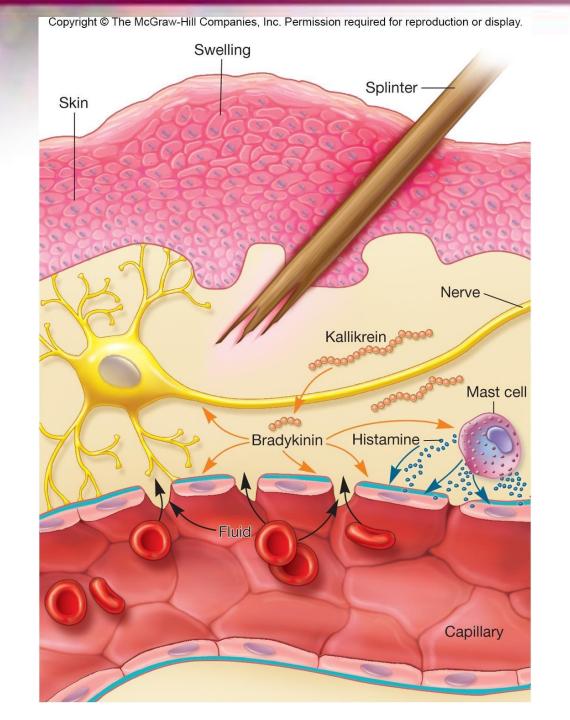
Inflammation

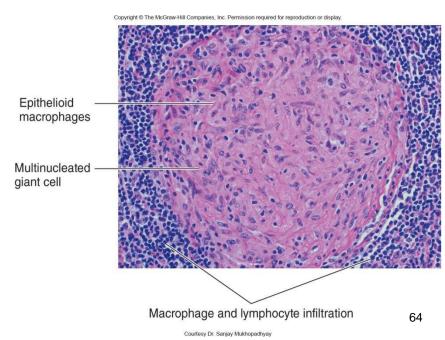

- Nonspecific response to tissue injury
 - can be caused by pathogen or physical trauma
 - acute inflammation is the immediate response of body to injury or cell death
- Cardinal signs
 - redness (rubor)
 - warmth (calor)
 - pain (dolor)
 - swelling (tumor)
 - altered function (functio laesa)


Acute Inflammatory Response

- The release of inflammatory mediators from injured tissue cells initiates a cascade of events which result in the signs of inflammation
- Involves chemical mediators
 - selectins
 - cell adhesion molecules on activated capillary endothelial cells
 - integrins
 - adhesion receptors on neutrophils
 - chemotaxins
 - chemotactic factors released by injured cells

Acute Inflammatory Response


- Various processes occur
 - margination
 - diapedesis
 - extravasion


More about Acute Inflammation...

- Tissue injury releases kalikrein and other mediators
 - increases capillary dilation and blood flow
 - brings more antimicrobial factors and leukocytes that kill pathogens
- Fibrin clot may restrict pathogen movement
- Phagocytes accumulate in inflamed area and destroy pathogens
- Bone marrow stimulated to release neutrophils and increase rate of granulocyte production

Chronic Inflammation

- Slow process
- Involves formation of new connective tissue
- Usually causes permanent tissue damage
- Dense infiltration of lymphocytes and macrophages at site of inflammation
 - granuloma
 - walled off area
 - formed when phagocytic cells can't destroy pathogen

