
C++ Polymorphism

The term "Polymorphism" is the combination of "poly" + "morphs" which means many

forms. It is a greek word. In object-oriented programming, we use 3 main concepts:

inheritance, encapsulation, and polymorphism.

Real Life Example Of Polymorphism

Let's consider a real-life example of polymorphism. A lady behaves like a teacher in a

classroom, mother or daughter in a home and customer in a market. Here, a single

person is behaving differently according to the situations.

There are two types of polymorphism in C++:

o Compile time polymorphism: The overloaded functions are invoked by

matching the type and number of arguments. This information is available at the

compile time and, therefore, compiler selects the appropriate function at the

compile time. It is achieved by function overloading and operator overloading

which is also known as static binding or early binding. Now, let's consider the

case where function name and prototype is same.

1. class A // base class declaration.

2. {

3. int a;

4. public:

5. void display()

6. {

7. cout<< "Class A ";

8. }

9. };

10. class B : public A // derived class declaration.

11. {

12. int b;

13. public:

14. void display()

15. {

16. cout<<"Class B";

17. }

18. };

In the above case, the prototype of display() function is the same in both the base and

derived class. Therefore, the static binding cannot be applied. It would be great if the

appropriate function is selected at the run time. This is known as run time

polymorphism.

o Run time polymorphism: Run time polymorphism is achieved when the object's

method is invoked at the run time instead of compile time. It is achieved by

method overriding which is also known as dynamic binding or late binding.

Differences b/w compile time and run time
polymorphism.

Compile time polymorphism Run time polymorphism

The function to be invoked is known at the compile time. The function to be invoked is known at the run time.

It is also known as overloading, early binding and static

binding.

It is also known as overriding, Dynamic binding and

late binding.

Overloading is a compile time polymorphism where more

than one method is having the same name but with the

different number of parameters or the type of the

parameters.

Overriding is a run time polymorphism where more

than one method is having the same name, number of

parameters and the type of the parameters.

It is achieved by function overloading and operator

overloading.

It is achieved by virtual functions and pointers.

It provides fast execution as it is known at the compile time. It provides slow execution as it is known at the run

time.

It is less flexible as mainly all the things execute at the

compile time.

It is more flexible as all the things execute at the run

time.

C++ Runtime Polymorphism Example

Let's see a simple example of run time polymorphism in C++.

// an example without the virtual keyword.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat(){

6. cout<<"Eating...";

7. }

8. };

9. class Dog: public Animal

10. {

11. public:

12. void eat()

13. { cout<<"Eating bread...";

14. }

15. };

16. int main(void) {

17. Dog d = Dog();

18. d.eat();

19. return 0;

20. }

Output:

Eating bread...

C++ Run time Polymorphism Example: By using two
derived class

Let's see another example of run time polymorphism in C++ where we are having two

derived classes.

// an example with virtual keyword.

1. #include <iostream>

2. using namespace std;

3. class Shape { // base class

4. public:

5. virtual void draw(){ // virtual function

6. cout<<"drawing..."<<endl;

7. }

8. };

9. class Rectangle: public Shape // inheriting Shape class.

10. {

11. public:

12. void draw()

13. {

14. cout<<"drawing rectangle..."<<endl;

15. }

16. };

17. class Circle: public Shape // inheriting Shape class.

18.

19. {

20. public:

21. void draw()

22. {

23. cout<<"drawing circle..."<<endl;

24. }

25. };

26. int main(void) {

27. Shape *s; // base class pointer.

28. Shape sh; // base class object.

29. Rectangle rec;

30. Circle cir;

31. s=&sh;

32. s->draw();

33. s=&rec;

34. s->draw();

35. s=?

36. s->draw();

37. }

Output:

drawing...

drawing rectangle...

drawing circle...

Runtime Polymorphism with Data Members

Runtime Polymorphism can be achieved by data members in C++. Let's see an example

where we are accessing the field by reference variable which refers to the instance of

derived class.

1. #include <iostream>

2. using namespace std;

3. class Animal { // base class declaration.

4. public:

5. string color = "Black";

6. };

7. class Dog: public Animal // inheriting Animal class.

8. {

9. public:

10. string color = "Grey";

11. };

12. int main(void) {

13. Animal d= Dog();

14. cout<<d.color;

15. }

Output:

Black

	C++ Polymorphism
	Real Life Example Of Polymorphism
	Differences b/w compile time and run time polymorphism.
	C++ Runtime Polymorphism Example
	C++ Run time Polymorphism Example: By using two derived class
	Runtime Polymorphism with Data Members

