Mechanical system

Mechanical systems are of two types,

- (i) Translational mechanical system and
- (ii) Rotational mechanical system.

The motion takes place along a straight line is known as translational motion.

The rotational motion of a body can be defined as the motion of a body about a fixed axis.

Translational mechanical system

There are three basic elements in a translational mechanical system,

- (a) Mass
- (b)spring
- (c) Damper

Mass: A mass is denoted by M. If a force *f* is applied on it and it displays distance *x*, then

Force applied on a mass with displacement in one direction

If a force *f* is applied on a **mass M** and it displays distance *x1* in the direction of *f* and distance *x2* in the opposite direction, then

Force applied on a mass with displacement two directions

(b) **Spring:** A spring is denoted by K. If a force f is applied on it and it displays distance x, then f = Kx as shown

Force applied on a spring with displacement in one direction

If a force f is applied on a springK and it displays distance x_1 in the direction of f and distance x_2 in the opposite direction, then $f = K (x_1 - x_2)$ as shown in Fig

Force applied on a spring with displacement in two directions

Damper: A damper is denoted by D. If a force *f* is applied on it and it displays distance *x*, then $f = D \frac{dx}{dt}$ as shown in Fig.

Force applied on a damper with displacement in one direction

If a force *f* is applied on a damperD and it displays distance x_1 in the direction of *f* and distance x_2 in the opposite direction, then $f = D\left(\frac{dx_1}{dt} - \frac{dx_2}{dt}\right)$ as shown in Fig.

Rotational mechanical system

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b) spring and (c) damper.

- (a) **Inertia:** A body with animertia is denoted by *J*. If a torque*T* is applied on it and it displays distance Θ , then $T = J \frac{d^2 \theta}{dt^2}$. If a torque*T* is applied on a body with inertia *J* and it displays distance Θ_I in the direction of *T* and distance Θ_2 in the opposite direction, then $T = J \left(\frac{d^2 \theta_1}{dt^2} \frac{d^2 \theta_2}{dt^2} \right)$.
- (b) Spring: A spring is denoted by K. If a torqueT is applied on it and it displays distanceO, then T = Kθ. If a torqueT is applied on a body with inertia J and it displays distance O₁ in the direction of T and distance O₂ in the opposite direction, then T = K(θ₁ θ₂).
- (c) **Damper:** A damper is denoted by D. If a torque*T* is applied on it and it displays distance Θ , then $T = D \frac{d\theta}{dt}$. If a torque*T* is applied on a body with inertia *J* and it

displays distance Θ_1 in the direction of T and distance Θ_2 in the opposite direction, then $T = D\left(\frac{d\Theta_1}{dt} - \frac{d\Theta_2}{dt}\right)$.

Force-voltage Analogy

Translational	Rotational	Electrical
Force (f)	Torque (T)	Voltage (v)
Mass (M)	Inertia (J)	Inductance (L)
Damper (D)	Damper (D)	Resistance (R)
Spring (K)	Spring (K)	Elastance (1/C)
Displacement (x)	Displacement (Θ)	Charge (q)
Velocity (u) = \dot{x}	Velocity (u) = $\dot{\theta}$	Current (i) = \dot{q}

Force-current analogy

Translational	Rotational	Electrical
Force (f)	Torque (T)	Current (i)
Mass (M)	Inertia (J)	Capacitance (C)
Damper (D)	Damper (D)	Conductance (1/R)
Spring (K)	Spring (K)	Reciprocal of Inductance (1/L)
Displacement (x)	Displacement (Θ)	Flux linkage (ψ)
Velocity (u) = \dot{x}	Velocity (u) = $\dot{\theta}$	Voltage (v) = $\dot{\psi}$