Bitwise Operator in C

The bitwise operators are the operators used to perform the operations on the data at
the bit-level. When we perform the bitwise operations, then it is also known as bit-level
programming. It consists of two digits, either 0 or 1. It is mainly used in numerical
computations to make the calculations faster.

We have different types of bitwise operators in the C programming language. The
following is the list of the bitwise operators:

Operator Meaning of operator

& Bitwise AND operator

| Bitwise OR operator

A Bitwise exclusive OR operator

~ One's complement operator (unary operator)
<< Left shift operator

>> Right shift operator

Let's look at the truth table of the bitwise operators.

X Y X&Y XY
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Bitwise AND operator

Bitwise AND operator is denoted by the single ampersand sign (&). Two integer
operands are written on both sides of the (&) operator. If the corresponding bits of both

XY

N o Vv A wWwDh =

N o v A WD =

the operands are 1, then the output of the bitwise AND operation is 1; otherwise, the
output would be 0.

For example,

We have two variables a and b.

a =6;

b=4;

The binary representation of the above two variables are given below:

a=0110

b =0100

When we apply the bitwise AND operation in the above two variables, i.e., a&b, the outp
ut would be:

Result = 0100

As we can observe from the above result that bits of both the variables are compared
one by one. If the bit of both the variables is 1 then the output would be 1, otherwise 0.

Let's understand the bitwise AND operator through the program.

#include <stdio.h>
int main()

{

int a=6, b=14; // variable declarations
printf("The output of the Bitwise AND operator a&b is %d",a&b);
return O;

}

In the above code, we have created two variables, i.e., 'a' and 'b". The values of 'a’' and 'b’
are 6 and 14 respectively. The binary value of 'a' and 'b' are 0110 and 1110, respectively.
When we apply the AND operator between these two variables,

aANDb =0110 && 1110 = 0110

Output

N o VA WD =

i A wnn =

v &
The output of the Bitwise AND cperator agbh iz 6

...Program finished with exit code 0
Press ENTER to exit cansole.D

Bitwise OR operator

The bitwise OR operator is represented by a single vertical sign (|). Two integer operands
are written on both sides of the (|) symbol. If the bit value of any of the operand is 1,
then the output would be 1, otherwise 0.

For example,

We consider two variables,

a=23

b =10;

The binary representation of the above two variables would be:
a =00010111

b = 0000 1010

When we apply the bitwise OR operator in the above two variables, i.e., alb, then the ou
tput would be:
Result = 0001 1111

As we can observe from the above result that the bits of both the operands are
compared one by one; if the value of either bit is 1, then the output would be 1
otherwise 0.

Let's understand the bitwise OR operator through a program.

#include <stdio.h>
int main()
{
int a=23,b=10; // variable declarations
printf("The output of the Bitwise OR operator a|b is %d",a|b);

6.
7.

N o A WD =

return O;

}

Output

v &

The output of the Bitwise OR operator alb is 31

...Program finished with exit code 0

Press ENTER to exit cansolE.D

Bitwise exclusive OR operator
Bitwise exclusive OR operator is denoted by () symbol. Two operands are written on
both sides of the exclusive OR operator. If the corresponding bit of any of the operand

is 1 then the output would be 1, otherwise 0.

For example,

We consider two variables a and b,

a=12

b =10;

The binary representation of the above two variables would be:
a = 0000 1100

b = 0000 1010

When we apply the bitwise exclusive OR operator in the above two variables (a”b), then
the result would be:
Result = 0000 1110

As we can observe from the above result that the bits of both the operands are
compared one by one; if the corresponding bit value of any of the operand is 1, then the
output would be 1 otherwise 0.

Let's understand the bitwise exclusive OR operator through a program.

. #include <stdio.h>

N o vk WD

ik W=

int main()
{
int a=12,b=10; // variable declarations
printf("The output of the Bitwise exclusive OR operator a”b is %d",a”b);

return O;

}

Output

v &

The output of the Bitwise exclusive OR operator a*b iz 6

. .Program finished with exit code 0
Press ENTER to exit cansmle.D

Bitwise complement operator

The bitwise complement operator is also known as one's complement operator. It is
represented by the symbol tilde (~). It takes only one operand or variable and performs
complement operation on an operand. When we apply the complement operation on
any bits, then 0 becomes 1 and 1 becomes 0.

For example,

If we have a variable named 'a’,

a=_§g
The binary representation of the above variable is given below:
a = 1000

When we apply the bitwise complement operator to the operand, then the output woul
d be:
Result = 0111

As we can observe from the above result that if the bit is 1, then it gets changed to 0
else 1.

1.

N o v kA wnh =

Let's understand the complement operator through a program.

#include <stdio.h>
int main()
{
int a=8; // variable declarations
printf("The output of the Bitwise complement operator ~a is %d",~a);

return O;

}

Output

v N

The output of the Bitwise complement operator -~a is —8

...Program finished with exit code 0

'ress ENTER to exit cgnsole.u

Bitwise shift operators

Two types of bitwise shift operators exist in C programming. The bitwise shift operators
will shift the bits either on the left-side or right-side. Therefore, we can say that the
bitwise shift operator is divided into two categories:

o Left-shift operator
o Right-shift operator

Left-shift operator
It is an operator that shifts the number of bits to the left-side.

Syntax of the left-shift operator is given below:

Operand << n

N o VA WD =

N o VA WD =

Where,
Operand is an integer expression on which we apply the left-shift operation.
n is the number of bits to be shifted.

In the case of Left-shift operator, 'n' bits will be shifted on the left-side. The 'n' bits on
the left side will be popped out, and 'n' bits on the right-side are filled with 0.

For example,

Suppose we have a statement:

inta=>5;

The binary representation of 'a’ is given below:

a=0101

If we want to left-shift the above representation by 2, then the statement would be:
a<<?2;

0101<<2 =00010100

Let's understand through a program.

#include <stdio.h>

int main()

{
int a=5; // variable initialization
printf("The value of a<<2is: %d ", a<<2);
return O;

}

Output

N o Vv A WD =

The walue of a<<?2 is : 20

.. .Program finished with exit code 0
Pres= ENTER to exit cﬂnsole.D

Right-shift operator
It is an operator that shifts the number of bits to the right side.

Syntax of the right-shift operator is given below:

. Operand >> n;

Where,
Operand is an integer expression on which we apply the right-shift operation.
N is the number of bits to be shifted.

In the case of the right-shift operator, 'n' bits will be shifted on the right-side. The 'n'
bits on the right-side will be popped out, and 'n' bits on the left-side are filled with 0.

For example,

Suppose we have a statement,

inta=7;

The binary representation of the above variable would be:

a=011

If we want to right-shift the above representation by 2, then the statement would be:
a>>2;

0000 0111 >> 2 = 0000 0001

Let's understand through a program.

. #include <stdio.h>

N o vk WD

int main()

{
int a=7; // variable initialization
printf("The value of a>>2 is: %d ", a>>2);
return O;

}

Output

The walue of a>»>»2 is :

...Program finished with exit code 0

FPress ENTER to exit cﬂnsole.l

	Bitwise Operator in C
	Bitwise AND operator
	Bitwise OR operator
	Bitwise exclusive OR operator
	Bitwise complement operator
	Bitwise shift operators

