Why are O's and 1's all
we nheed?

Limits of the Universal Method

For how large a circuit can we realistically
expect to use the Universal Method?

What do we do for larger circuits?

Numeracy

How large do circuits get?

How large do truth tables get?

Numeracy (cont.)

1-input Truth Table

2 rows

Numeracy (cont.)

1-input Truth Table

2 rows 2-input Truth Table

4 rows

Numeracy (cont.)

3-input Truth Table: 8 rows

Numeracy (cont.)

Inputs Rows 1n truth table
1 2

2 4

3 8

4 ??

S 77

Arbitrary N 27

Numeracy (cont.)

Each input can be O or 1: 2 possibilities.

So if there are - inputs, that is a total of
2*2*2%*2= " possible input values.

Numeracy (cont.)

Inputs Rows 1n truth table
1 2

2 4

3 8

4 16

S 77

Arbitrary N 27

Numeracy (cont.)

Inputs Rows 1n truth table
1 2

2 4

3 8

4 16

S . 7

Arbitrary N

77

Numeracy (cont.)

Each input can be O or 1: 2 possibilities.

In general, if there are ' inputs,
there will be =~ possible input values.

Numeracy (cont.)

Inputs Rows 1n truth table
1 2

2 4

3 8

4 16

S 32

Arbitrary N 2"

Powers of 2

+ 2" comes up a lot in Computer Science.

Numbers to memorize:

. 2'z2, 2°z4, 2°:zs,

. 2%=16, 2°=32, 2°=+64
. 27 =128, 2%= 256, 2° = 512,
. 29= 1024

Powers of 2 (cont.)

2'°= 1,024
2% = 1,048 576
30 _
2" = 1073741824
2% = 1099 511 627 776
2°9 = 1125 899 906 842 624
2°0 = 1152 921 504 606 846 976

Powers of 2 (cont.)
Some rough numbers:
2'° = 1,024 ~ 1,000 (10%)
2°° = 1,048,576 ~ 1,000,000 (10°)
2°° £ 1,000,000,000 (10°)

29 < 1.000,000,000,000 (102)

250 1D

~ 10

260 - 1018

Powers of 2 (cont.)
Some rough numbers:
219+ 1000 (10°) kilo
2°° 1000000 (10°) mega RAM

2°° < 10° giga disk
5™ i o tera BIG disk
250 ~ 10" peta

2% w18 exa Knowledge

Sidebar on Exabytes

e Tt's taken the entire history of
humanity through 1999 to
accumulate 12 exabytes of
information. By the middle of 2002
the second dozen exabytes will
have been created

e 1 exabytes = 50,000 times the
library of congress

e Floppys to make 1 exabyte would
stack 24 million miles high.

Powers of 2 (cont.)

16 inputs means Truth Table

has 2162 219 * 2% = 1024 * ¢4
~ 64 000 rows

Circuit could have 64,000 or more gates

Universal Method (cont.)

What about 100 inputs:

Is it reasonable to use Universal Method on
Truth Table with 100 inputs?

Universal Method (cont.)

What about 100 inputs:

Is it reasonable to use Universal Method on
Truth Table with 100 inputs?

2 100 - 1030

Each AND/OR/NOT gate uses at least
1 transistor.

This is way beyond current technology,
in fact ...

Numeracy (cont.)

State-of-the-art transistors are about
.1 micrometer (mm) on a side:

Lined end-to-end, you could fit
10,000,000 transistors in1m. (= 3 f.)

Inalm. by 1m. square, you could fit
100,000,000,000,000 transistors

That's still 999,999,999,999,999,
900,000,000,000,000
too few for 100 input Truth Table !

No good?

How sad should we be? Not very.

You just need to use many Truth Tables
each having fewer inpufts.

Can make an entire computer using only 16-
input Truth Tables and the Universal
Method!

On the other hand, must realize that in
some cases, we need more efficient
special purpose circuits than the Universal
Method. (We won't cover these.)

Our First Abstract Tool

Universal Method: Circuits for ANY Truth Table

O's :
& Universal
I's Method

Computers

So what?

We can deal with O's and 1's now,
but why should we?

Answer: Because we can
so many things
with O's and 1's.

Meaning

In Logic, we thought of O and 1
as meaning True and False.
Now, we remove these connotations.

Definition: a bit is just a single variable that
can be O or 1.

Representing Information

Information in the world comes in many
forms - letters, numbers, pictures, sounds...

How can we represent these things
with O's and 1's?

Start with numbers.

Representing Numbers

Before computers, in devices,
numbers typically represented
continuously.

e.g. Clocks:

Binary Numbers

How do we count normally?

0,1,2,3,4,5,6,7,8,
9,10, ..

19, 20, ...

99, 100, ... 999, 1000, ..

Suppose we only had two numerals - 0 and 1.

Then how would we count?

0,
1, 10,
11, 100, 101, 110, ...

Binary Numbers (cont.)

Binary Numbers (cont.)

- Addition:

101
+ 111

Binary Numbers (cont.)

Addition - Our "basic" addition table
is really easy now:

+ 0+0=0
- 0+1=1

1+0=1
1+1=10

+ Addition - just like usual:

Binary Numbers (cont.)

101
+ 111

+ Addition - just like usual:

Binary Numbers (cont.)

101
+ 111

+ Addition - just like usual:

Binary Numbers (cont.)

101
+ 111

00

+ Addition - just like usual:

Binary Numbers (cont.)

101
+ 111

1100

Binary Numbers (cont.)
Lf (10),,is called 10, what do we call (10), ?

Can we convert between binary and decimal?
(123),,= 2*61 + 1
=2°*30+2' *1+ (2°*)1
= 2%%15 + 0% 2%+ 21 *1 + (2° %)1
= 2% 2°+2%4+2°+ 20+ 2°
. = (1111011),

(101101) ,= 2°+2°+2°+2°=32+8+4+1:= 45

Binary Numbers (cont.)

Can also do:
Subtraction, Multiplication, etc
Negative Numbers

Fractions

Great, where do Logic Circuits fit in?

Binary Numbers (cont.)

For Addition on small numbers,
can make a truth table:

Binary Numbers (cont.)

Addition Truth Table with Multiple Outputs:

Binary Numbers (cont.)

+ Same as 2 Truth Tables:

Binary Numbers (cont.)

+ Same as 2 Truth Tables:

Binary Numbers (cont.)

Binary Numbers (cont.)

This 1s often called the eXclusive OR (XOR) circuit
We say that B is the exclusive OR of X and Y.

We write B = X DY,

A Logic Puzzle?

Bob will go to the party if
Ed goes OR Dan goes.

Dan will go if Xena does NOT go AND
Yanni goes.

Ed will go if Xena goes AND
Yanni does NOT go.

A Simple Breakthrough

We can represent information by bits.
(So we interpret bits to mean things like numbers.)

Then we those bits as
Logical True/False values.

Finally we use Universal Method to construct

circuits for operations on information
(like Addition).

Intermission

* Questions??

 How are we going to build a circuit for
addition?

L2

Z1

Y2

¥l

=

X1

Addition

X1 X2
Y1Y2

C Z1 722
C 1s the carry bit

L2

Z1

Y2

¥l

=

X1

Addition

1
1

X1 X2
Y1Y2
C Z1 22
Could have 3 circuits
2 w/ 8 ANDs, 1 OR
1 w6 ANDs, 1 OR

C 1s the carry bit
16 mputs each

25 gates

Addition

X1 X2
Y1Y2

Rewrite as

X2

X1
¥l
C2

C Zi

Addition

2 circuits

total of 4 gates

X1l [Y1 2 Z1
0 0
X1 | |
0 | 0 |
Y1
0 | | 0
2
| 0 0 |
- | 0 | 0
C ZI1
| | 0 0
| | | |
3 circuits
total of 10 gates

Addition

X2

Y7

X1

|

Universal
Circuit

For

/2 and carry

C2

Universal
Circuit

For

Z.1 and carry

Z2

Z1

Carry

BRI

Universal
Circuit

For

/2 and carry

Inside the box

Z2

C2

X2
—)

N
2 |AND Vs 22
JoR —

X2 == C2
AND —

Addition

We can use 2 building blocks to add numbers of any length.

Actually we need only 1 building block

ith bit of X ith bit of Z
ith bit of Y :
carry bit out
carry bit

Abstraction in action -- This is a piece of a carry-ripple adder

Carry-Ripple Adder

Z1 : 72
: Z0 X1 |[Universal X2 (Universal |
X0 |Universal — = = |Circuit
~ |Circuit Circuit o C2
YO o Y1 [For i EFor
o — |Z2 and carr /2 and carry
0 — Y1_r
Fixed at 0 X2 X1 X0
Y2 Y1 YO

2 42, £l 2D

Representing information

 How do we represent characters?

— How many characters might we want to
represent?

— What characters might we want to represent?

Representing information

 How do we represent characters?
— How many characters might we want to represent?

— What characters might we want to represent?

« A-Z 26
« A-Zand a-z 32
 All the keys on my keyboard 104
« Maybe a power of 2? 128
« Maybe an even power of 27 256

« Maybe an even bigger power of 2? 65536

Representing characters

o ASCII 1s the American Standard Code for

Information Interchange. It is a 7-bit code.

* Many 8-bit codes contain ASCII as their
lower half

 The ASCII standard was published by the
United States of America Standards Institute
(USASI) 1n 1968.

Unicode

Universal Character Set (UCS) contains all characters of all other
character set standards. It also guarantees round-trip compatibility, 1.e.,
conversion tables can be built such that no information is lost when
a string 1s converted from any other encoding to UCS and back.

UCS contains the characters required to represent almost all known
languages. This includes apart from the many languages which use
extensions of the Latin script also the following scripts and

languages: Greek, Cyrillic, Hebrew, Arabic, Armenian, Gregorian, Japanese,

Chinese, Hiragana, Katakana, Korean, Hangul, Devangari, Bengali, Gurmukhi,

Gujarati, Oriya, Tamil, Telugu, Kannada, Malayam, Thai, Lao, Bopomofo, and a
number of others. Work is going on to include further scripts like Tibetian, Khmer,
Runic, Ethiopian, Hieroglyphics, various Indo-European languages, and many others.

It’s intended to use 31 bits (32768 possible characters)

What do we do 1n practice

 Problems

— Bits represent too little — too many are needed

— Decimal numbers don’t translate well into bits
e So,

— Group into blocks of 4 and 8 bits
* & bits = 256 characters, holds ASCII
* 8 bits make 1 byte — things are organized into bytes

e 4 bits make 1 nibble

Shorthand: Hexadecimal

Hexadecimal

We can add numbers
— 1+1=2, 242=4, 4+4=8, 4+8=C, 2+8=A, ...
We can combine 2 hexadecimal numbers to

make a byte.

It’s easier to read than 0’s and 1°’s

In ASCII

— hex 41 through 5A represent A to Z
— Hex 61 through 7A represent a to z

Summary

Review of gates and the Universal Method

Show that the universal method can lead to very
big circuits
Fix the problem

Demonstrate the fix
— Carry-ripple adder (a meaty example)

Representing characters

— Hexadecimal
— Bytes, nibbles

Next Time:
Memory

s

A 4

'r
B

B |

Now that we can represent it,
how do we store it??

