Why are 0's and 1's all we need?

Limits of the Universal Method

- For how large a circuit can we realistically expect to use the Universal Method?
- What do we do for larger circuits?

Numeracy

How large do circuits get?

How large do truth tables get?

Х	У
0	1
1	0

1-input Truth Table

2 rows

Х	У
0	1
1	0

1-input Truth Table

2 rows

X	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

2-input Truth Table

4 rows

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

3-input Truth Table: 8 rows

Inputs	Rows in truth table
1	2
2	4
3	8
4	??
5	??
Arbitrary N	??

- Each input can be 0 or 1: 2 possibilities.
- So if there are 4 inputs, that is a total of 2 * 2 * 2 * 2 = 16 possible input values.

Inputs	Rows in truth table
1	2
2	4
3	8
4	16
5	??
Arbitrary N	??

Inputs	Rows in truth table
1	2
2	4
3	8
4	16
5	32
Arbitrary N	??

- Each input can be 0 or 1: 2 possibilities.
- In general, if there are n inputs, there will be 2^n possible input values.

Inputs	Rows in truth table
1	2
2	4
3	8
4	16
5	32
Arbitrary N	2 ^N

Powers of 2

- 2ⁿ comes up a lot in Computer Science.
- · Numbers to memorize:

•
$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 8$,

•
$$2^4 = 16$$
, $2^5 = 32$, $2^6 = 64$,

•
$$2^7 = 128$$
, $2^8 = 256$, $2^9 = 512$,

•
$$2^{10} = 1024$$

$$2^{10}$$
 = 1,024
 2^{20} = 1,048,576
 2^{30} = 1,073,741,824
 2^{40} = 1,099,511,627,776
 2^{50} = 1,125,899,906,842,624
 2^{60} = 1,152,921,504,606,846,976

Some rough numbers:

$$2^{10} = 1,024 \approx 1,000 (10^{3})$$
 $2^{20} = 1,048,576 \approx 1,000,000 (10^{6})$
 $2^{30} \approx 1,000,000,000 (10^{9})$
 $2^{40} \approx 1,000,000,000,000 (10^{12})$
 $2^{50} \approx 10^{15}$
 $2^{60} \approx 10^{18}$

· Some rough numbers:

$$2^{10} \approx 1,000 (10^3)$$
 kilo $2^{20} \approx 1,0000,000 (10^6)$ mega RAM $2^{30} \approx 10^9$ giga disk $2^{40} \approx 10^{12}$ tera BIG disk $2^{50} \approx 10^{15}$ peta $2^{60} \approx 10^{18}$ exa knowledge

Sidebar on Exabytes

- It's taken the entire history of humanity through 1999 to accumulate 12 exabytes of information. By the middle of 2002 the second dozen exabytes will have been created
- 1 exabytes = 50,000 times the library of congress
- Floppys to make 1 exabyte would stack 24 million miles high.

- 16 inputs means Truth Table has $2^{16} = 2^{10} * 2^{6} = 1,024 * 64$ $\approx 64,000 \text{ rows}$
- Circuit could have 64,000 or more gates

Universal Method (cont.)

- What about 100 inputs:
- Is it reasonable to use Universal Method on Truth Table with 100 inputs?

Universal Method (cont.)

- What about 100 inputs:
- Is it reasonable to use Universal Method on Truth Table with 100 inputs?
- $2^{100} \approx 10^{30}$
- Each AND/OR/NOT gate uses at least 1 transistor.
- This is way beyond current technology, in fact . . .

- State-of-the-art transistors are about
 .1 micrometer (mm) on a side:
 - Lined end-to-end, you could fit 10,000,000 transistors in 1 m. (≈ 3 f.)
 - In a 1 m. by 1 m. square, you could fit 100,000,000,000,000 transistors

No good?

- How sad should we be? Not very.
- You just need to use many Truth Tables each having fewer inputs.
- Can make an entire computer using only 16input Truth Tables and the Universal Method!
- On the other hand, must realize that in some cases, we need more efficient special purpose circuits than the Universal Method. (We won't cover these.)

Our First Abstract Tool

Universal Method: Circuits for ANY Truth Table

So what?

 We can deal with 0's and 1's now, but why should we?

 Answer: Because we can represent so many things with 0's and 1's.

Meaning

- In Logic, we thought of 0 and 1 as meaning True and False.
- Now, we remove these connotations.
- Definition: a bit is just a single variable that can be 0 or 1.

Representing Information

- Information in the world comes in many forms - letters, numbers, pictures, sounds...
- How can we represent these things with 0's and 1's?

Start with numbers.

Representing Numbers

- Before computers, in devices, numbers typically represented continuously.
- e.g. Clocks:

Binary Numbers

- How do we count normally?
- 0, 1, 2, 3, 4, 5, 6, 7, 8,
 9, 10, ...
 19, 20, ...
 99, 100, ...
 99, 1000, ...
- Suppose we only had two numerals 0 and 1.
- Then how would we count?
 0,
 1, 10,
 11, 100, 101, 110, ...

0	0
1	1
2	10
3	1 1
4	100
5	101
6	110
7	111
8	1000

· Addition:

```
1 0 1 + 1 1 1
```

- Addition Our "basic" addition table is really easy now:
- 0 + 0 = 0
- $\cdot 0 + 1 = 1$
- $\cdot 1 + 0 = 1$
- \cdot 1 + 1 = 10

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

- If $(10)_{10}$ is called 10, what do we call $(10)_2$?
- Can we convert between binary and decimal?

$$(123)_{10} = 2*61 + 1$$

$$= 2^{2}*30 + 2^{1}*1 + (2^{0}*)1$$

$$= 2^{3}*15 + 0*2^{2} + 2^{1}*1 + (2^{0}*)1$$

$$= 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{1} + 2^{0}$$
...... = (1111011)₂

$$(101101)_{2} = 2^{5} + 2^{3} + 2^{2} + 2^{0} = 32 + 8 + 4 + 1 = 45$$

- Can also do:
 - Subtraction, Multiplication, etc.
 - Negative Numbers
 - Fractions

Great, where do Logic Circuits fit in?

 For Addition on small numbers, can make a truth table:

X	У	Z
0	0	0
0	1	1
1	0	1
1	1	10

Problem:
Output can
be 2 bits
sometimes

Addition Truth Table with Multiple Outputs:

X	У	Α	В
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Same as 2 Truth Tables:

X	У	Α
0	0	0
0	1	0
1	0	0
1	1	1

Х	У	В
0	0	0
0	1	1
1	0	1
1	1	0

Same as 2 Truth Tables:

X	У	Α
0	0	0
0	1	0
1	0	0
1	1	1

X	У	В
0	0	0
0	1	1
1	0	1
1	1	0

Now we can convert into 2 circuits!

This is often called the eXclusive OR (XOR) circuit We say that B is the exclusive OR of X and Y.

We write $B = X \bigcirc Y$.

A Logic Puzzle?

- Bob will go to the party if Ed goes OR Dan goes.
- Dan will go if Xena does NOT go AND Yanni goes.
- Ed will go if Xena goes AND
 Yanni does NOT go.

- This is addition without the carry
- Bob goes if the XOR of Xena and Yanni go.

A Simple Breakthrough

We can represent information by bits.
 (So we interpret bits to mean things like numbers.)

 Then we re-interpret those bits as Logical True/False values.

 Finally we use Universal Method to construct circuits for operations on information (like Addition).

Intermission

• Questions??

 How are we going to build a circuit for addition?

X1 X2 Y1 Y2

C Z1 Z2

C is the carry bit

X1	X2	Y1	Y2	Z1	Z2	С
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	1	0
1	0	1	0	0	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	0	1	0	0	1
1	1	1	0	0	1	1
1	1	1	1	1	0	1

X1 X2 Y1 Y2

C Z1 Z2

C is the carry bit

Could have 3 circuits 16 inputs each

2 w/ 8 ANDs, 1 OR 1 w 6 ANDs, 1 OR

X1	X2	Y1	Y2	Z1	Z2	С
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	1	0
1	0	1	0	0	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	0	1	0	0	1
1	1	1	0	0	1	1
1	1	1	1	1	0	1

X1 X2	Rewrite as	
Y1 Y2	X2	X1
C Z1 Z2	Y2	Y1
	====	C2
	C2 Z2	
		C Z1

X2 X1

Y2 Y1

____ C2

C2 Z2 ====

C Z1

X1	Y1	C2	С	Z1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2 circuits total of 4 gates 3 circuits

total of 10 gates

Inside the box

We can use 2 building blocks to add numbers of any length.

Actually we need only 1 building block

Abstraction in action -- This is a piece of a carry-ripple adder

Carry-Ripple Adder

Representing information

- How do we represent characters?
 - How many characters might we want to represent?
 - What characters might we want to represent?

Representing information

- How do we represent characters?
 - How many characters might we want to represent?
 - What characters might we want to represent?

• A-Z	26
• A-Z and a-z	52
 All the keys on my keyboard 	104
 Maybe a power of 2? 	128
 Maybe an even power of 2? 	256
 Maybe an even bigger power of 2? 	65536

Representing characters

- ASCII is the American Standard Code for Information Interchange. It is a 7-bit code.
- Many 8-bit codes contain ASCII as their lower half
- The ASCII standard was published by the United States of America Standards Institute (USASI) in 1968.

Unicode

- Universal Character Set (UCS) contains all characters of all other character set standards. It also guarantees round-trip compatibility, i.e., conversion tables can be built such that no information is lost when a string is converted from any other encoding to UCS and back.
- UCS contains the characters required to represent almost all known languages. This includes apart from the many languages which use extensions of the Latin script also the following scripts and
 - languages: Greek, Cyrillic, Hebrew, Arabic, Armenian, Gregorian, Japanese, Chinese, Hiragana, Katakana, Korean, Hangul, Devangari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayam, Thai, Lao, Bopomofo, and a number of others. Work is going on to include further scripts like Tibetian, Khmer, Runic, Ethiopian, Hieroglyphics, various Indo-European languages, and many others.
- It's intended to use 31 bits (32768 possible characters)

What do we do in practice

Problems

- Bits represent too little too many are needed
- Decimal numbers don't translate well into bits

• So,

- Group into blocks of 4 and 8 bits
 - 8 bits = 256 characters, holds ASCII
 - 8 bits make 1 byte things are organized into bytes
 - 4 bits make 1 nibble

Shorthand: Hexadecimal

0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1

8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
Е	1	1	1	0
F	1	1	1	1

Hexadecimal

- We can add numbers
 - -1+1=2, 2+2=4, 4+4=8, 4+8=C, 2+8=A, ...
- We can combine 2 hexadecimal numbers to make a byte.
- It's easier to read than 0's and 1's
- In ASCII
 - hex 41 through 5A represent A to Z
 - Hex 61 through 7A represent a to z

Summary

- Review of gates and the Universal Method
- Show that the universal method can lead to very big circuits
- Fix the problem
- Demonstrate the fix
 - Carry-ripple adder (a meaty example)
- Representing characters
 - Hexadecimal
 - Bytes, nibbles

Next Time: Memory

Now that we can represent it, how do we store it??