- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR if he (Matt) already feels like going, UNLESS Rita decides to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

- Matt doesn't like Rita
- Matt decides to go to the party if Sue decides to go OR:
 - If he (Matt) already feels like going AND Rita decides NOT to go.

The Flip-Flop

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if Set and Reset are both 0),
 M just remembers its value

The Flip-Flop

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if Set and Reset are both 0),
 M just remembers its value

The Data Flip-Flop

Nothing happens unless Write = 1

The Data Flip-Flop

- Nothing happens unless Write = 1
- If Write = 1, then M becomes set to D
- Once Write = 0 again, M just keeps its value.
 (It ignores D.)

Initially, Write = 0. Let's say M = 1.

- Initially, Write = 0. Let's say M = 1.
- First, set D to desired value, say 0.

- Initially, Write = 0. Let's say M = 1.
- First, set D to desired value, say 0.
- Then, set Write to 1.

- Initially, Write = 0. Let's say M = 1.
- First, set D to desired value, say 0.
- Then, set Write to 1.
- This causes M to be reset to 0.

- Initially, Write = 0. Let's say M = 1.
- First, set D to desired value, say 0.
- Then, set Write to 1.
- This causes M to be reset to 0.
- Finally set Write back to 0. Now D irrelevant.

The Data Flip-Flop

- If Write = 0, M just keeps its value. (It ignores D.)
- If Write = 1, then M becomes set to D

A subtle problem

- When Write = 1, then M = D.
- If we have some feedback between M and D, then circuit could go haywire.

A subtle problem

- For example, suppose NOT gate connects M and D.
- When Write = 1,
 M and D keep changing. We have no control.

A subtle problem

- We want to control the feedback, so that each time we set Write to 1 and then back to 0, M stores only the last value of D
- (In this case, M should invert itself once each time we set Write to 1 and back to 0)

Two-Stage System to prevent feedback loop.

- We start with Write = 0.
- Let's say D is always NOT M.
 Start with D = 0, M = 1.

- We start with Write = 0.
- Let's say D is always NOT M.
 Start with D = 0, M = 1.

- Want to store D in memory.
- Set Write to 1

- Want to store D in memory.
- Set Write to 1
- "Outer" flip-flop sets $M_0 = D_0 = 0$
- "Inner" flip-flop ignores D_1 since $W_1 = 0$

Now, set Write back to 0

- Now, set Write back to 0
- Now "Inner" flip-flop sets M = D₁ = 0

- Because of feedback, D might change to (NOT M), which is 1
- But Write = 0, so "Outer" flip-flop ignores D, and so M₀ stays 0.

- So memory does not change until we "toggle" Write.
- ("toggle" means change from 0 to 1 or vice versa)

· This is Real Memory!

Memory "Register": 4 bits

Review

- We have used the Universal method to build
 - ALU
 - Memory

- Next steps
 - State machines to computer with memory
 - Building the computer
 - Writing a program to use the computer