Introduction to Operating System (OS)

Course Content:

- What is an OS.
- What are its key functions.
- The evaluation of OS.
- What are the popular types of OS.
- Basics of UNIX and Windows.
- Advantages of open source OS like Linux.
- Networks OS.

What is an Operating System?

- Computer System = Hardware + Software
- Software = Application Software + System Software(OS)
- An Operating System is a system Software that acts as an intermediary/interface between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

The Structure of Computer Systems

- Accessing computer resources is divided into *layers*.
- ➤ Each layer is isolated and only interacts directly with the layer below or above it.
- ➤ If we install a new hardware device
 - ✓ No need to change anything about the user/applications.
 - ✓ However, you do need to make changes to the operating system.
 - ✓ You need to install the device drivers that the operating system will use to control the new device.
- ➤ If we install a new software application
 - ✓ No need to make any changes to your hardware.
 - ✓ But we need to make sure the application is supported by the operating system
 - ✓ user will need to learn how to use the new application.
- ➤ If we change the operating system
 - ✓ Need to make sure that both applications and hardware will compatible with the new operating system.

Computer Architecture

CPU – Central Processing Unit

- This is the brain of your computer.
- It performs all of the calculations.
- ➤ In order to do its job, the CPU needs commands to perform, and data to work with.
- The instructions and data travel to and from the CPU on the system bus.
- The operating system provides rules for how that information gets back and forth, and how it will be used by the CPU.

RAM – Random Access Memory

- This is like a desk, or a workspace, where your computer temporarily stores all of the information (data) and instructions (software or program code) that it is currently using.
- Each RAM chip contains millions of address spaces.
- Each address space is the same size, and has its own unique identifying number (address).
- ➤ The operating system provides the rules for using these memory spaces, and controls storage and retrieval of information from RAM.
- ➤ Device drivers for RAM chips are included with the operating system.

Problem: If RAM needs an operating system to work, and an operating system needs RAM in order to work, how does your computer activate its RAM to load the operating system?

Operating System Mode

- ❖ The *User Mode* is concerned with the actual interface between the user and the system.
- It controls things like running applications and accessing files.

User mode
(client)

Kernel mode
(server)

ned with everything

Output

Dispatcher

Sequential Seque

Service

Application

Kernel

Hardware

- The Kernel Mode is concerned with everything running in the background.
- It controls things like accessing system resources, controlling hardware functions and processing program instructions.
- System calls are used to change mode from User to Kernel.

Kernel

- Kernel is a software code that reside in central core of OS. It has complete control over system.
- When operation system boots, kernel is first part of OS to load in main memory.
- Kernel remains in main memory for entire duration of computer session. The kernel code is usually loaded in to protected area of memory.
- Kernel performs it's task like executing processes and handling interrupts in kernel space.
- User performs it's task in user area of memory.
- This memory separation is made in order to prevent user data and kernel data from interfering with each other.
- Kernel does not interact directly with user, but it interacts using SHELL and other programs and hardware.

Kernel cont...

- Kernel includes:-
 - 1. Scheduler: It allocates the Kernel's processing time to various processes.
 - 2. Supervisor: It grants permission to use computer system resources to each process.
 - 3. Interrupt handler: It handles all requests from the various hardware devices which compete for kernel services.
 - 4. Memory manager: allocates space in memory for all users of kernel service.
- kernel provides services for process management, file management, I/O management, memory management.
- System calls are used to provide these type of services.

System Call

- > System call is the programmatic way in which a computer program/user application requests a service from the kernel of the operating system on which it is executed.
- Application program is just a user-process. Due to security reasons, user applications are not given access to privileged resources(the ones controlled by OS).
- ➤ When they need to do any I/O or have some more memory or spawn a process or wait for signal/interrupt, it requests operating system to facilitate all these. This request is made through System Call.
- > System calls are also called **software-interrupts**.

Starting an Operating System(Booting)

- ✓ Power On Switch sends electricity to the motherboard on a wire called the *Voltage Good* line.
- ✓ If the power supply is good, then the BIOS (Basic Input/Output System) chip takes over.
- ✓ In Real Mode, CPU is only capable of using approximately 1 MB of memory built into the motherboard.
- ✓ The BIOS will do a Power-On Self Test (POST) to make sure that all hardware are working.

- ✓ BIOS will then look for a small sector at the very beginning of your primary hard disk called MBR.
- ✓ The MBR contains a list, or map, of all of the partitions on your computer's hard disk (or disks).
- After the MBR is found the Bootstrap Loader follows basic instructions for starting up the rest of the computer, including the operating system.
- In Early Kernel Initialization stage, a smaller core of the Kernel is activated.
- This core includes the device drivers needed to use computer's RAM chips.

BIOS

- BIOS firmware was stored in a ROM/EPROM (Erasable Programmable Read-Only Memory) chip known as firmware on the PC motherboard.
- BIOS can be accessed during the initial phases of the boot procedure by pressing del, F2 or F10.
- Finally, the firmware code cycles through all storage devices and looks for a boot-loader. (usually located in first sector of a disk which is 512 bytes)
- If the boot-loader is found, then the firmware hands over control of the computer to it.

Functions of Operating System

1. Process Management

- A process is a program in execution.
- A process needs certain resources, including CPU time, memory, files, and I/O devices to accomplish its task.
- Simultaneous execution leads to multiple processes. Hence creation, execution and termination
 of a process are the most basic functionality of an OS
- If processes are dependent, than they may try to share same resources. thus task of process synchronization comes to the picture.
- If processes are independent, than a due care needs to be taken to avoid their overlapping in memory area.
- Based on priority, it is important to allow more important processes to execute first than others.

2. Memory management

- Memory is a large array of words or bytes, each with its own address.
- It is a repository of quickly accessible data shared by the CPU and I/O devices.
- Main memory is a **volatile** storage device. When the computer made turn off everything stored in RAM will be erased automatically.
- In addition to the physical RAM installed in your computer, most modern operating systems allow your computer to use a virtual memory system. Virtual memory allows your computer to use part of a permanent storage device (such as a hard disk) as extra memory.
- The operating system is responsible for the following activities in connections with memory management:
 - ➤ Keep track of which parts of memory are currently being used and by whom.
 - ➤ Decide which processes to load when memory space becomes available.
 - ➤ Allocate and de-allocate memory space as needed.

3. File Management

- A file is a collection of related information defined by its creator.
- File systems provide the conventions for the encoding, storage and management of data on a storage device such as a hard disk.
 - FAT12 (floppy disks)
 - > FAT16 (DOS and older versions of Windows)
 - FAT32 (older versions of Windows)
 - NTFS (newer versions of Windows)
 - EXT3 (Unix/Linux)
 - ➤ HFS+ (Max OS X)
- The operating system is responsible for the following activities in connections with file management:
 - ◆ File creation and deletion.
 - ◆ Directory creation and deletion.
 - ◆ Support of primitives for manipulating files and directories.
 - → Mapping files onto secondary storage.
 - → File backup on stable (nonvolatile) storage media.

4. Device Management or I/O Management

- Device controllers are components on the motherboard (or on expansion cards) that act as an interface between the CPU and the actual device.
- Device drivers, which are the operating system software components that interact with the devices controllers.
- A special device (inside CPU) called the Interrupt Controller handles the task of receiving interrupt requests and prioritizes them to be forwarded to the processor.
- Deadlocks can occur when two (or more) processes have control of different I/O resources that are needed by the other processes, and they are unwilling to give up control of the device.
- It performs the following activities for device management.
 - Keeps tracks of all devices connected to system.
 - Designates a program responsible for every device known as Input/output controller.
 - Decides which process gets access to a certain device and for how long.
 - ➤ Allocates devices in an effective and efficient way.
 - ➤ Deallocates devices when they are no longer required.

5. Security & Protection

- The operating system uses password protection to protect user data and similar other techniques.
- It also prevents unauthorized access to programs and user data by assigning access right permission to files and directories.
- The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other.

6. User Interface Mechanism

- A user interface (UI) controls how you enter data and instructions and how information is displayed on the screen
- There are two types of user interfaces
 - 1. Command Line Interface
 - 2. Graphical user Interface

1. Command-line interface

• In a command-line interface, a user types commands represented by short keywords or abbreviations or presses special keys on the keyboard to enter data and instructions

2. Graphical User Interface

• With a graphical user interface (GUI), you interact with menus and visual images

History of Operating System

- The First Generation (1940's to early 1950's)
 - ➤ No Operating System
 - ➤ All programming was done in absolute machine language, often by wiring up plug-boards to control the machine's basic functions.
- The Second Generation (1955-1965)
 - First operating system was introduced in the early 1950's. It was called GMOS
 - Created by General Motors for IBM's machine the 701.
 - Single-stream batch processing systems
- The Third Generation (1965-1980)
 - ➤ Introduction of multiprogramming
 - ➤ Development of Minicomputer
- **The Fourth Generation (1980-Present Day)**
 - ➤ Development of PCs
 - ➤ Birth of Windows/MaC OS

Types of Operating Systems

- 1. Batch Operating System
- 2. Multiprogramming Operating System
- 3. Time-Sharing OS
- 4. Multiprocessing OS
- 5. Distributed OS
- 6. Network OS
- 7. Real Time OS
- 8. Embedded OS

1. Batch Operating System

- The users of this type of operating system does not interact with the computer directly.
- Each user prepares his job on an off-line device like punch cards and submits it to the computer operator
- There is an operator which takes similar jobs having the same requirement and group them into batches

1. Batch Operating System cont...

Advantages of Batch Operating System:

- > Processors of the batch systems know how long the job would be when it is in queue
- ➤ Multiple users can share the batch systems
- The idle time for the batch system is very less
- ➤ It is easy to manage large work repeatedly in batch systems

Disadvantages of Batch Operating System:

- The computer operators should be well known with batch systems
- ➤ Batch systems are hard to debug
- ➤ It is sometimes costly
- The other jobs will have to wait for an unknown time if any job fails

Examples of Batch based Operating System:

IBM's MVS

2. Multiprogramming Operating System:

- This type of OS is used to execute more than one jobs simultaneously by a single processor.
- It increases CPU utilization by organizing jobs so that the CPU always has one job to execute.
- Multiprogramming operating systems use the mechanism of job scheduling and CPU scheduling.

3. Time-Sharing Operating Systems

- Each task is given some time to execute so that all the tasks work smoothly.
- These systems are also known as Multi-tasking Systems.
- The task can be from a single user or different users also.
- The time that each task gets to execute is called quantum.
- After this time interval is over OS switches over to the next task.

3. Time-Sharing Operating Systems cont...

Advantages of Time-Sharing OS:

- Each task gets an equal opportunity
- > Fewer chances of duplication of software
- > CPU idle time can be reduced

Disadvantages of Time-Sharing OS:

- ➤ Reliability problem
- > One must have to take care of the security and integrity of user programs and data
- ➤ Data communication problem
- Examples of Time-Sharing Oss

Multics, Unix, etc.

4. Multiprocessor operating systems

- Multiprocessor operating systems are also known as parallel OS or tightly coupled OS.
- Such operating systems have more than one processor in close communication that sharing the computer bus, the clock and sometimes memory and peripheral devices.
- It executes multiple jobs at the same time and makes the processing faster.
- It supports large physical address space and larger virtual address space.
- If one processor fails then other processor should retrieve the interrupted process state so execution of process can continue.
- Inter-processes communication mechanism is provided and implemented in hardware.