
Recursion in C 

Recursion is the process which comes into existence when a function calls a copy of 

itself to work on a smaller problem. Any function which calls itself is called recursive 

function, and such function calls are called recursive calls. Recursion involves several 

numbers of recursive calls. However, it is important to impose a termination condition of 

recursion. Recursion code is shorter than iterative code however it is difficult to 

understand. 

Recursion cannot be applied to all the problem, but it is more useful for the tasks that 

can be defined in terms of similar subtasks. For Example, recursion may be applied to 

sorting, searching, and traversal problems. 

Generally, iterative solutions are more efficient than recursion since function call is 

always overhead. Any problem that can be solved recursively, can also be solved 

iteratively. However, some problems are best suited to be solved by the recursion, for 

example, tower of Hanoi, Fibonacci series, factorial finding, etc. 

In the following example, recursion is used to calculate the factorial of a number. 

1. #include <stdio.h>   

2. int fact (int);   

3. int main()   

4. {   

5.     int n,f;   

6.     printf("Enter the number whose factorial you want to calculate?");   

7.     scanf("%d",&n);   

8.     f = fact(n);   

9.     printf("factorial = %d",f);   

10. }   

11. int fact(int n)   

12. {   

13.     if (n==0)   

14.     {   

15.         return 0;   

16.     }   

17.     else if ( n == 1)   



18.     {   

19.         return 1;   

20.     }   

21.     else    

22.     {   

23.         return n*fact(n-1);   

24.     }   

25. }   

Output 

Enter the number whose factorial you want to calculate?5 

factorial = 120  

We can understand the above program of the recursive method call by the figure given 

below: 

  

Recursive Function 

A recursive function performs the tasks by dividing it into the subtasks. There is a 

termination condition defined in the function which is satisfied by some specific subtask. 

After this, the recursion stops and the final result is returned from the function. 



The case at which the function doesn't recur is called the base case whereas the 

instances where the function keeps calling itself to perform a subtask, is called the 

recursive case. All the recursive functions can be written using this format. 

Pseudocode for writing any recursive function is given below. 

1. if (test_for_base)   

2. {   

3.     return some_value;   

4. }   

5. else if (test_for_another_base)   

6. {   

7.     return some_another_value;   

8. }   

9. else   

10. {   

11.     // Statements;   

12.     recursive call;   

13. }   

Example of recursion in C 

Let's see an example to find the nth term of the Fibonacci series. 

1. #include<stdio.h>   

2. int fibonacci(int);   

3. void main ()   

4. {   

5.     int n,f;   

6.     printf("Enter the value of n?");   

7.     scanf("%d",&n);   

8.     f = fibonacci(n);   

9.     printf("%d",f);   

10. }   

11. int fibonacci (int n)   

12. {   



13.     if (n==0)   

14.     {   

15.     return 0;   

16.     }   

17.     else if (n == 1)   

18.     {   

19.         return 1;    

20.     }   

21.     else   

22.     {   

23.         return fibonacci(n-1)+fibonacci(n-2);   

24.     }   

25. }   

Memory allocation of Recursive method 

Each recursive call creates a new copy of that method in the memory. Once some data is 

returned by the method, the copy is removed from the memory. Since all the variables 

and other stuff declared inside function get stored in the stack, therefore a separate 

stack is maintained at each recursive call. Once the value is returned from the 

corresponding function, the stack gets destroyed. Recursion involves so much 

complexity in resolving and tracking the values at each recursive call. Therefore we need 

to maintain the stack and track the values of the variables defined in the stack. 

Let us consider the following example to understand the memory allocation of the 

recursive functions. 

1. int display (int n)   

2. {   

3.     if(n == 0)   

4.         return 0; // terminating condition   

5.     else    

6.     {   

7.         printf("%d",n);   

8.         return display(n-1); // recursive call   

9.     }   
 


	Recursion in C
	Output
	Recursive Function
	Example of recursion in C
	Memory allocation of Recursive method


