
Storage Classes in C 

Storage classes in C are used to determine the lifetime, visibility, memory location, and 

initial value of a variable. There are four types of storage classes in C 

o Automatic 

o External 

o Static 

o Register 

Storage 

Classes 

Storage 

Place 

Default 

Value 

Scope Lifetime 

auto RAM Garbage 

Value 

Local Within function 

extern RAM Zero Global Till the end of the main program Maybe declared anywhere in 

the program 

static RAM Zero Local Till the end of the main program, Retains value between 

multiple functions call 

register Register Garbage 

Value 

Local Within the function 

Automatic 

o Automatic variables are allocated memory automatically at runtime. 

o The visibility of the automatic variables is limited to the block in which they are 

defined. 

The scope of the automatic variables is limited to the block in which they are 

defined. 

o The automatic variables are initialized to garbage by default. 

o The memory assigned to automatic variables gets freed upon exiting from the 

block. 



o The keyword used for defining automatic variables is auto. 

o Every local variable is automatic in C by default. 

Example 1 

1. #include <stdio.h>   

2. int main()   

3. {   

4. int a; //auto   

5. char b;   

6. float c;    

7. printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.

    

8. return 0;   

9. }   

Output: 

garbage garbage garbage  

Example 2 

1. #include <stdio.h>   

2. int main()   

3. {   

4. int a = 10,i;    

5. printf("%d ",++a);   

6. {   

7. int a = 20;    

8. for (i=0;i<3;i++)   

9. {   

10. printf("%d ",a); // 20 will be printed 3 times since it is the local value of a   

11. }   

12. }   

13. printf("%d ",a); // 11 will be printed since the scope of a = 20 is ended.    

14. }   



Output: 

  11 20 20 20 11 

Static 

o The variables defined as static specifier can hold their value between the multiple 

function calls. 

o Static local variables are visible only to the function or the block in which they are 

defined. 

o A same static variable can be declared many times but can be assigned at only 

one time. 

o Default initial value of the static integral variable is 0 otherwise null. 

o The visibility of the static global variable is limited to the file in which it has 

declared. 

o The keyword used to define static variable is static. 

Example 1 

1. #include<stdio.h>   

2. static char c;   

3. static int i;   

4. static float f;    

5. static char s[100];   

6. void main ()   

7. {   

8. printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.    

9. }   

Output: 

0 0 0.000000 (null) 

Example 2 

1. #include<stdio.h>   

2. void sum()   



3. {   

4. static int a = 10;   

5. static int b = 24;    

6. printf("%d %d \n",a,b);   

7. a++;    

8. b++;   

9. }   

10. void main()   

11. {   

12. int i;   

13. for(i = 0; i< 3; i++)   

14. {   

15. sum(); // The static variables holds their value between multiple function calls.     

16. }   

17. }   

Output: 

10 24  

11 25  

12 26  

Register 

o The variables defined as the register is allocated the memory into the CPU 

registers depending upon the size of the memory remaining in the CPU. 

o We can not dereference the register variables, i.e., we can not use &operator for 

the register variable. 

o The access time of the register variables is faster than the automatic variables. 

o The initial default value of the register local variables is 0. 

o The register keyword is used for the variable which should be stored in the CPU 

register. However, it is compiler?s choice whether or not; the variables can be 

stored in the register. 

o We can store pointers into the register, i.e., a register can store the address of a 

variable. 



o Static variables can not be stored into the register since we can not use more 

than one storage specifier for the same variable. 

Example 1 

1. #include <stdio.h>   

2. int main()   

3. {   

4. register int a; // variable a is allocated memory in the CPU register. The initial default va

lue of a is 0.    

5. printf("%d",a);   

6. }   

Output: 

0 

Example 2 

1. #include <stdio.h>   

2. int main()   

3. {   

4. register int a = 0;    

5. printf("%u",&a); // This will give a compile time error since we can not access the addres

s of a register variable.    

6. }   

Output: 

main.c:5:5: error: address of register variable ?a? requested 

printf("%u",&a); 

^~~~~~ 

External 

o The external storage class is used to tell the compiler that the variable defined as 

extern is declared with an external linkage elsewhere in the program. 



o The variables declared as extern are not allocated any memory. It is only 

declaration and intended to specify that the variable is declared elsewhere in the 

program. 

o The default initial value of external integral type is 0 otherwise null. 

o We can only initialize the extern variable globally, i.e., we can not initialize the 

external variable within any block or method. 

o An external variable can be declared many times but can be initialized at only 

once. 

o If a variable is declared as external then the compiler searches for that variable to 

be initialized somewhere in the program which may be extern or static. If it is not, 

then the compiler will show an error. 

Example 1 

1. #include <stdio.h>   

2. int main()   

3. {   

4. extern int a;    

5. printf("%d",a);   

6. }   

Output 

main.c:(.text+0x6): undefined reference to `a' 

collect2: error: ld returned 1 exit status 

Example 2 

1. #include <stdio.h>   

2. int a;    

3. int main()   

4. {   

5. extern int a; // variable a is defined globally, the memory will not be allocated to a   

6. printf("%d",a);   

7. }   

Output 



0 

Example 3 

1. #include <stdio.h>   

2. int a;    

3. int main()   

4. {   

5. extern int a = 0; // this will show a compiler error since we can not use extern and initial

izer at same time    

6. printf("%d",a);   

7. }   

Output 

compile time error  

main.c: In function ?main?: 

main.c:5:16: error: ?a? has both ?extern? and initializer 

extern int a = 0; 

Example 4 

1. #include <stdio.h>   

2. int main()   

3. {   

4. extern int a; // Compiler will search here for a variable a defined and initialized somewh

ere in the pogram or not.    

5. printf("%d",a);   

6. }   

7. int a = 20;   

Output 

20 

Example 5 

1. extern int a;   

2. int a = 10;    

3. #include <stdio.h>   



4. int main()   

5. {   

6. printf("%d",a);   

7. }   

8. int a = 20; // compiler will show an error at this line    

Output 

compile time error  

 


	Storage Classes in C
	Automatic
	Example 1
	Example 2

	Static
	Example 1
	Example 2

	Register
	Example 1
	Example 2

	External
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5



