

"Sequencing" means finding the order of nucleotides on a piece of DNA

- Gene
- Distinct portion of the DNA that codes for a type of protein or for an RNA chain.

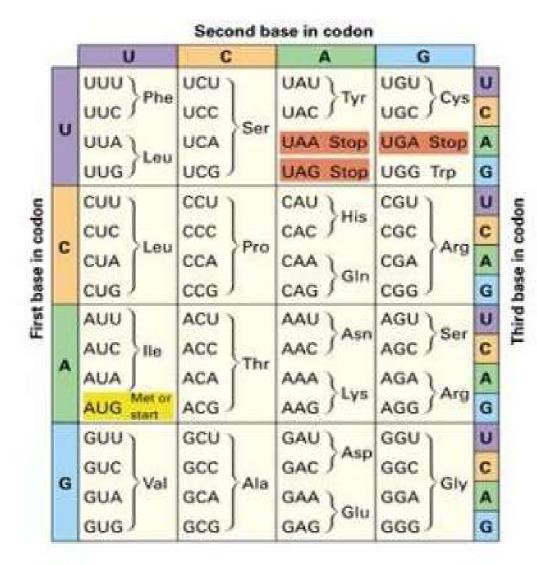
• DNA

A nucleic acid, made up of four similar chemicals called bases - A, T, C, and G that are repeated over and over in pairs.

Gene sequencing

Gene sequencing is a process in which the individual base nucleotides in an organism's DNA are identified.

- Gene sequencing = DNA sequencing = nucleotide sequencing = base sequencing
- The process of determining the order of nucleotides adenine (A), thymine (T), cytosine (C), and guanine (G) along a DNA strand.


DNA Sequencing

110 A 00 140 A CO CI 1 100 1000 A C 270 250 260 280 10 ACCO CACOO I C CAT I I TO 550 AD CAAL 160 C C A 170 400010110 100 CO 0 66 460 470 460 490 500 510 40 TOOAC A01 101 A ADT CACT ATTT CODDAADCA TCACITOAC man war war and an and an

• Nucleotide order determines Amino acid order, and by extension, protein structure and function

Need of sequencing

- Understanding a particular DNA sequence can shed light on a genetic condition and offer hope for the eventual development of treatment.
- An alteration in a DNA sequence can lead to an altered or non functional protein, and hence to a harmful effect in a plant or animal.
- Simple point mutations can cause altered protein shape and function.

DNA Sequence variation can change the Protein produced by a particular gene

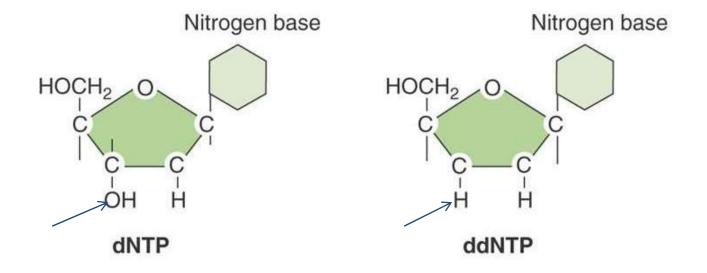
Gene A	Codon results in particular Amino Acid (AA) sequence	A3Q	AGA	GAT	AAT	TGT
from person l		Ala	Arg		8azi	Cys
Gene A from person Z	Coden change makes no difference in AA (redundant code)	GCE	AGA	GAT	AAT	TGT
		Ala	Ang		Aan	Суя
Gene A	Codon change results in different AA sequence	GCA	ASA	GAT	TAAT	TGT
from person 3		Ala			Aun	Суя

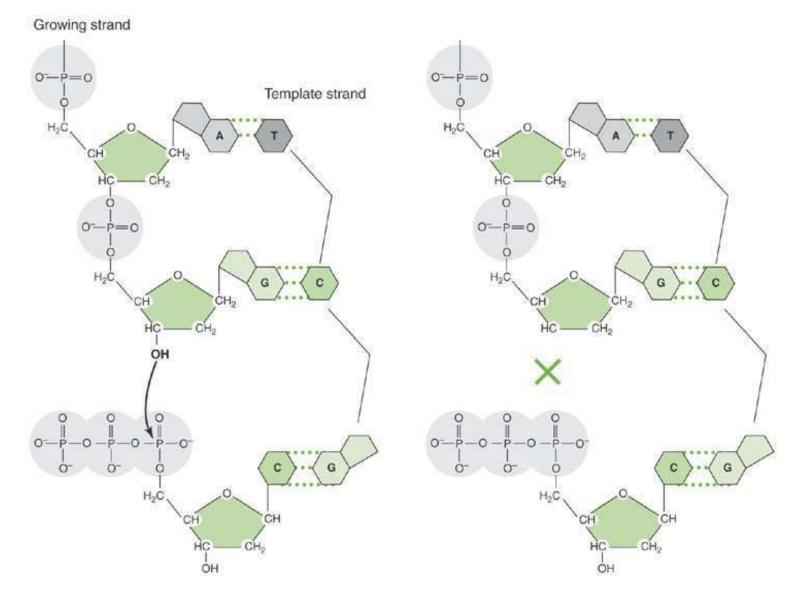
•Simple point mutations such as this can cause altered protein shape and function.

•Diseases such as Sickle Cell Anaemia and Cystic Fibrosis are caused by point mutations

SEQUENCING METHODS

To determine the order of the nucleotide bases adenine, guanine, cytosine, and thymine in a molecule of DNA two methods were used

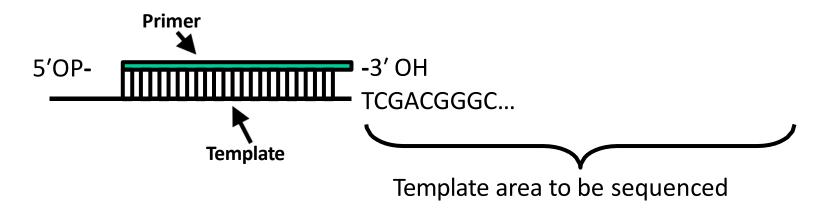

- 1. Sanger; Chain Termination Sequencing method
- 2. Maxam and Gilbert; Chemical Sequencing method


These two methods are most popular conventional methods

Robotics and automated sequencing are based on these methods

Sanger's- Chain Termination Sequencing

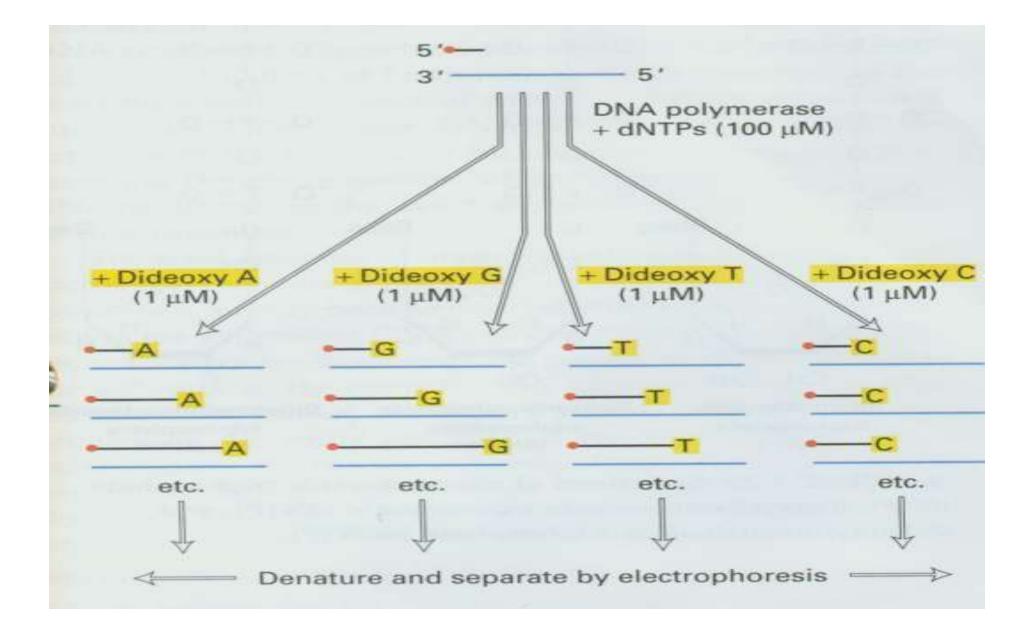
- It is PCR based method
- A modified DNA replication reaction
- Growing chains are terminated by dideoxynucleotides



The 3'-OH group necessary for formation of the phosphodiester bond is missing in ddNTPs.

Sanger Sequencing: Process

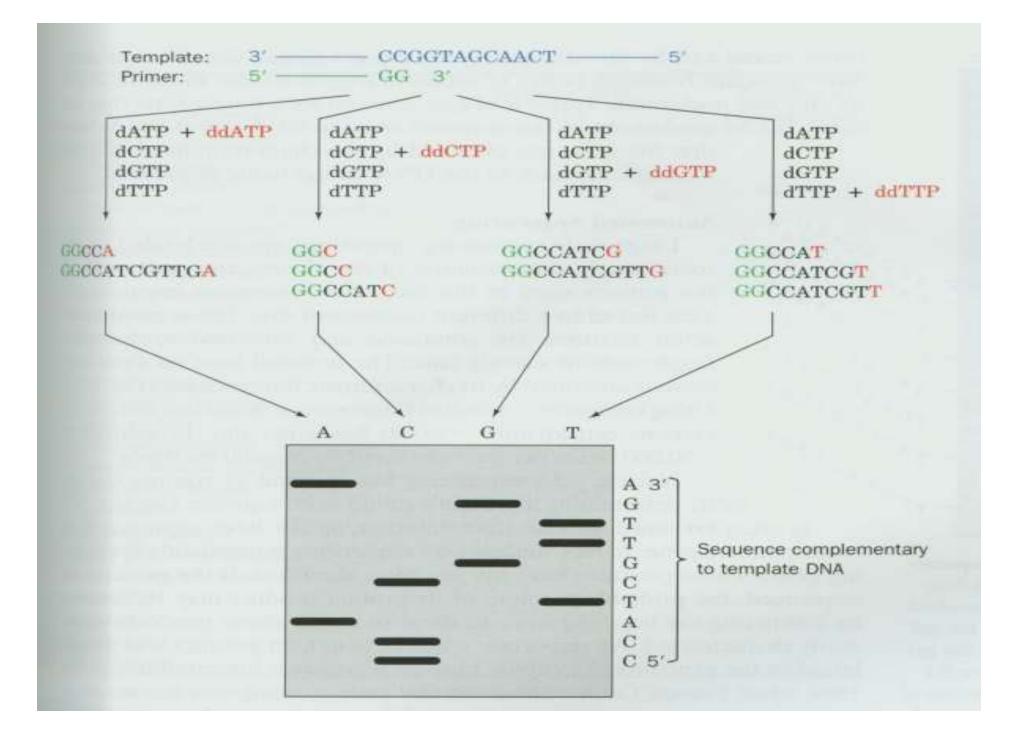
- 1. Get enough quantity of DNA (Run PCR)
- 2. Aliqot DNA sample into four different tubes
- 3. Prepare PCR reaction mix as below:
- Primer, Taq polymerase, template(ssDNA), dNTPS (All) and ddNTPs(ddATP, ddGTP, ddCTP & ddTTP respectively)
 - •To each reaction is added only one of the four <u>dideoxynucleotides</u> (ddATP, ddGTP, ddCTP, or ddTTP)

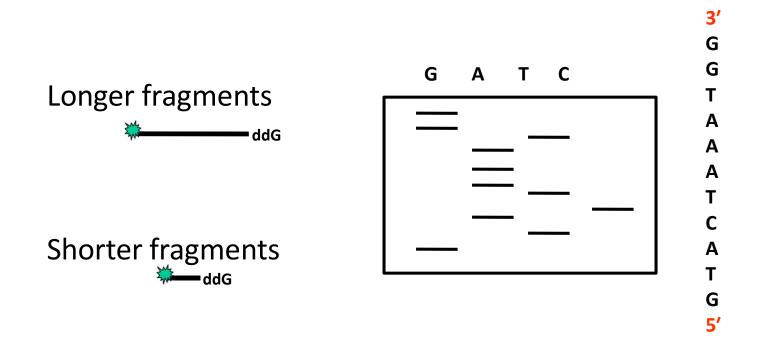


Dideoxynucleotides are added separately to each of the four tubes.

Sanger Sequencing: Process

1. Run PCR


- With addition of enzyme (DNA polymerase), the primer is extended until a ddNTP is encountered.
- The chain will end with the incorporation of the ddNTP.
- With the proper dNTP:ddNTP ratio, the chain will terminate throughout the length of the template.
- All terminated chains will end in the ddNTP added to that reaction.


The collection of fragments is a sequencing ladder.

The resulting terminated chains are resolved by electrophoresis.

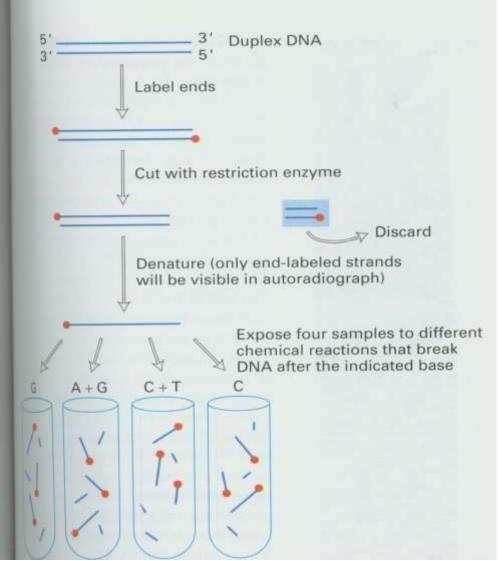
Fragments from each of the four tubes are placed in four separate gel lanes.

Chain Termination (Sanger) Sequencing

Sequencing gels are read from bottom to top (5' to 3').

Advantages

- Most popular method.
- Simpler and quicker allowing large output.
- Within an hour the primerannealing and sequencing reactions can be completed.


Disadvantages

- Yielding of poor results owing to secondary structure in the DNA as sometimes DNA polymerases terminate chain elongation prematurely.
- The sequence is obtained not from the original DNA molecule but from an enzymatic copy. So, there is a chance of incorporation of wrong bases.

Maxam–Gilbert sequencing method

Stages

- 1. The double-stranded fragment to be sequenced is isolated and radioactively labeled at the 5'ends with ³²P.
- 2. The fragment is then cut with restriction enzyme and thus the label is removed from one end.
- 3. The fragment of DNA with one end labeled is denatured.
- 4. Four identical samples of these end-labeled DNA restriction fragments are subjected to chemical cleavage at different chemical nucleotides.

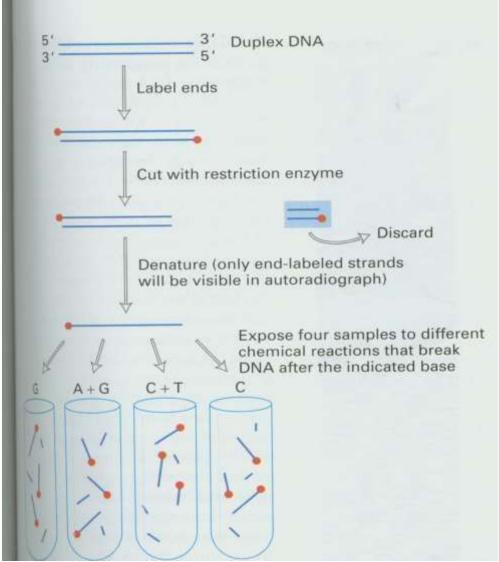
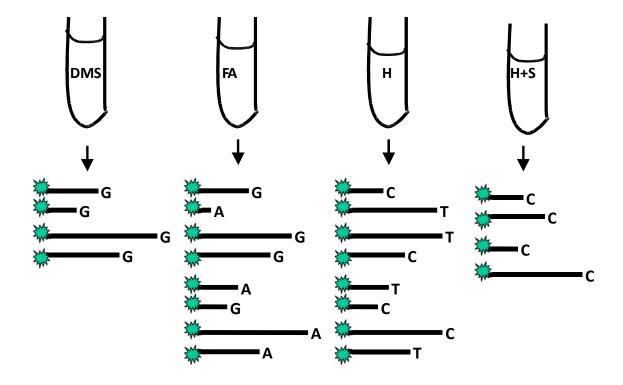


Figure: Maxam-Gilbert method (continued) Lodish, H.;Berk, A. *et. al.* (4th ed); *Mol. Cell Biol.*; W. H. Freeman and Co. (2000) p: 233

Stages


There are four specific sets of chemical reactions that selectively cut the DNA backbone at G, A+G, C+T, or C residues.

- G only: Dimethyl sulphate (DMS) and piperidine
- ➤ A+G : DMS, piperidine
- C+T : Hydrazine, piperidine
- C only : Hydrazine, alkali, piperidine

Figure: Maxam-Gilbert method (continued) Lodish, H.;Berk, A. *et. al.* (4th ed); *Mol. Cell Biol.*; W. H. Freeman and Co. (2000) p: 233

Maxam-Gilbert Sequencing

Maxam-Gilbert sequencing is performed by chain breakage at specific nucleotides.

Contd...

- 6. For each labeled chain to be broken only once, the reactions are controlled.
- 7. The labeled sub-fragments created by the four reactions have the ³²P label at one end and the chemical cleavage point at the other end.
- 8. The reaction products are separated by polyacrylamide gel electrophoresis which is based on size. Smallest fragment goes fastest.

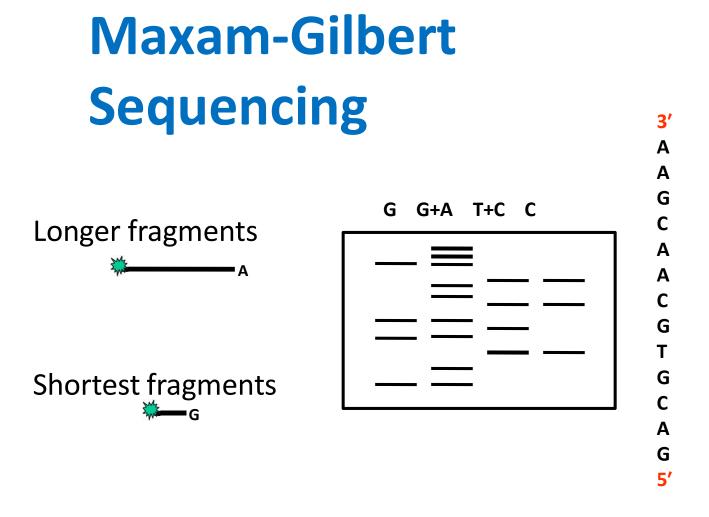



Figure: Apparatus for gel electrophoresis Voet, D.; Voet, J. and Pratt, C. (upgrade ed) *Fundamentals of Biochemistry*; John Wiley and Sons, Inc (2002); p: 58

- 9. The labeled fragments in the gel are visualized by autoradiography.
- 10. The sequence is read from bottom to top of the gel.

1	1.	19	
G	A + G	C + T	C
	E A	F	$ \sim $
JA .	11	///	
1000		95	
XI I			1 -
No.		18 1	
	1		
X. J.	()	$\langle - \rangle$	
1	Jar A + G	C + C	Reaction proceeds long enough to produce an average of one break per strand; the random breaks generate end-labeled fragments representing all positions of each indicated base
			C 3' A T T C G
			Ä
			т
			T
			C
			G
	-		G
	3		Parallel gel G electrophoresis
			G electrophoresis
			T and autoradiography
			т
			Т
			Т
			T
			T
			- C 5'

Figure: Maxam-Gilbert method Lodish, H.;Berk, A. *et. al.* (4th ed); *Mol. Cell Biol.*; W. H. Freeman and Co. (2000) p: 233

Sequencing gels are read from **bottom to top** (5' to 3').

Advantages

- No premature termination • due to DNA sequencing. So, • Use of radioactivity and no problem with polymerase to synthesize DNA.
- Stretches of DNA can be sequenced which can not be done with enzymatic method.

Disadvantages

- Not widely used. •
- toxic chemicals.