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ME202: Fluid Mechanics- 1 

Flow through Pipes 

Lecture 1 

 
Dr. S. M. Kamal 

 
Flow through pipes is an important engineering problem in fluid mechanics. Almost in all 

our daily operations, we come across pipe flow. For example, the household water supply, 

sewage flows etc. The pipe flow is also used for the transportation of chemicals and petroleum 

products in different chemical and oil industries.  

Here, we will discuss this important type of problem, i.e., the flow of fluids through 

pipes. We consider the flow of real fluids i.e. the fluids possessing viscosity. Thus, flow of all 

real fluids is termed as viscous flows. For real fluids, the property viscosity is characterized by 

the shear stresses or the frictional forces between the fluid layers and fluid to solid surface. Now 

the question is what causes the flow of real fluids? You need to understand that in case of a real 

fluid flow, the mechanical energy at the upstream section is more than at the downstream 

section. That means fluid flows by virtue of the energy gradient. So, energy is the potential that 

causes the flow of real fluids in pipes or any other flowing devices. 

Pipe flow can be stated as the closed conduit flow of fluid under certain pressure. A 

typical pipe flow is shown in Fig. 1 for pipe completely full of flowing fluid. The velocity is the 

maximum at the center of the pipe and is zero at the solid surface. If we consider the Newton’s 

law of shear stress, then 
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where µ is the coefficient of dynamic viscosity.    
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Fig.1 Typical flow through pipe 

 

 

 

Types of flow through pipes: 

        Flow through pipes can be classified as laminar or turbulent. The non-dimensional 

number, Reynolds number, Re is used to determine the type of flow through pipes. The 

Reynolds number is given by 

Inertia force
Re ,
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where ρ is the density of the fluid, V is the average velocity of flow, D is the hydraulic diameter 

and µ is the coefficient of dynamic viscosity.  

         In 1883 Osborne Reynolds, a British engineering professor, conducted some experiments 

by injecting dye into the middle of the stream of a pipe flow to observe whether the flow is 

laminar or turbulent. The Reynolds experimental observations are shown schematically in Fig. 2. 

          We have observed that flow gradually transits from laminar to turbulent depending on the 

velocity of flow. High velocity causes turbulence and at sufficiently low velocity, the flow is 

laminar. In laminar flow, the stream lines moves parallel to each other. The fluid particles move 

in planes which are gliding over each other.  When the velocity of flow exceeds some threshold 

value for a given fluid in a pipe, the flow becomes turbulent. Turbulent flow is the flow, where 

the flow becomes irregularly fluctuating with time; flow becomes unsteady. 

           Reynolds number shows the nature of flow in a pipe.  

Reynolds Number Condition of flow 

Re < 2000 Laminar 

2000 < Re < 4000 Transitional 

Re > 4000 Turbulent 
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Fig. 2 Reynolds’ schematic sketches of pipe flow transition: (a) Laminar viscous flow at 

extremely small velocity, (b) Transitional flow as the velocity increases and (c) Turbulent flow at 

high velocity  

Laminar Flow in pipe: 

       Let us consider a fully developed laminar flow through a long, straight and constant 

diameter horizontal pipe.  Consider that D is the diameter and R is the radius of the pipe. Taking 

a fluid element of length L and radius r, the free body diagram is shown in Fig. 3.  



4 

 

 

Fig. 3 Laminar flow through pipe 

The force balance of the fluid element provides 

( ) ,pA p p A SLτ− − ∆ =      (4) 

where τ is the shear stress, p is the pressure, ∆p is the pressure drop,  A is the cross-sectional area 

of the element and S is the perimeter.  

From Eq. (4), 
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Eq. (5) provides the pressure drop in the fluid element.  Shear stress distribution throughout the 

pipe is a linear function of the radial coordinate. Thus, 
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where τw is the wall shear stress. Substituting Eq. (6) in Eq. (5) we obtain the pressure drop in the 

pipe as 
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The pressure drop is directly proportional to the shear stress. Physically, it is because of the shear 

stress there is a pressure drop in the pipe. A small shear stress can produce a large pressure 

difference if the pipe is relatively long, i.e., L/D>>1.  

 Shear stress can be given by (for pipe) 

d
,

d

u

r
τ µ= −  



5 

 

d
.

d

u

r

τ

µ
= −              (8) 

Substituting τ from Eq. (5) in Eq. (8), we obtain 
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Integration of Eq. (9) provides 
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where C is an integration constant. Using the boundary condition: at r=D/2, u=0 from Eq. (10) 

we obtain the value of C as 
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Using Eq. (11) in Eq. (10), the velocity distribution as a function of radial coordinate is obtained 

as  

22 2
( ) 1 .

16

pD r
u r

L Dµ

  ∆   
= −    

    
           (12)  

The velocity is maximum at the centre i.e. at r=0.  Thus, Eq. (12) provides 
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where Vc is the centerline velocity (maximum velicity). Thus, Eq. (12) can be written as 
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Using Eq. (7), Eq. (12) can also be written as 
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Discharge through the pipeline (Q): 

d ,Q u A= ∫   
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Substituting Vc in Eq. (16), we obtain  
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Average velocity of flow: 

The average velocity of flow, V is given by  
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Substituting Q from Eq. (17) in Eq. (18) and cross-sectional area A=πD
2
, we get 
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Loss of pressure head (hf): 
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Using Eq. (17) or Eq. (19) for ∆p in Eq. (20), one obtains 
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Eq. (21) is called the Hagen Poiseuille equation. 

 


