Full Adder

The half adder is used to add only two numbers. To overcome this problem, the full adder was developed. The full adder is used to add three 1-bit binary numbers A, B, and carry C. The full adder has three input states and two output states i.e., sum and carry.

Block diagram

Truth Table

Inputs			Outputs	
\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {in }}$	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The full adder logic circuit can be constructed using the 'AND' and the 'XOR' gate with an OR gate.

The actual logic circuit of the full adder is shown in the above diagram. The full adder circuit construction can also be represented in a Boolean expression.

Sum:

1. Perform the XOR operation of input A and B.
2. Perform the XOR operation of the outcome with carry. So, the sum is (A XOR B) XOR C $\mathrm{C}_{\text {in }}$ which is also represented as:
$(\mathrm{A} \oplus \mathrm{B}) \oplus \mathrm{C}_{\mathrm{in}}$
Carry:
3. Perform the 'AND' operation of input A and B.
4. Perform the 'XOR' operation of input A and B.
5. Perform the 'OR' operations of both the outputs that come from the previous two steps. So the 'Carry' can be represented as:

$$
\mathrm{A} . \mathrm{B}+(\mathrm{A} \oplus \mathrm{~B})
$$

References:

