Meta- Centric height
$G M=\frac{I}{V}-B G$

1. A body has the cylindrical upper portion of 3 m diameter and 1.8 m deep. The lower portion is a curved one, which displaces a volume of $0.6 \mathrm{~m}^{3}$ of water. The centre of buoyancy of the curved portion is at a distance of 1.95 m below the top of the cylinder.
The centre of gravity of the whole body is 1.20 is 1.20 m below the top of the cylinder. The total displacement of water is 3.9 tonnes. Find the meta-centric height of the body.

Ans. Meta centric height $\quad G M=\frac{I}{V}-B G$

$$
\begin{aligned}
I & =\frac{\pi R^{4}}{4} \\
& =\frac{3.14 \times(1.5)^{4}}{4} \\
& =3.98 \mathrm{~m}^{4}
\end{aligned}
$$

Total volume displaced $\mathrm{V}=3.9$ tonnes

$$
\begin{aligned}
& =3.9 \times 1.133 \mathrm{~m}^{3} \\
& =4.42 \mathrm{~m}^{3}
\end{aligned}
$$

Volume displaced by cylindrical part $=4.42-.6=3.82 \mathrm{~m}^{3}$
Volume displaced by cylindrical part = area of cross section x depth of height immersed into liquid Axh $=3.82$
$h=\frac{3.82}{\pi r^{2}}=\frac{3.82}{3.14 \times 1.5^{2}}=0.54 \mathrm{~m}$
Location of centre of buoyancy from interface of water

$$
\begin{aligned}
\bar{y} & =\frac{V_{1} y_{1}+V_{2} y_{2}}{V_{1}+V_{2}} \\
& =\frac{3.82 \times \frac{h}{2}+0.6 \times(1.95-1.8+0.54)}{4.42} \\
& =0.327
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{BG}=0.327+0.06=0.387 \mathrm{~m} \\
& \mathrm{GM}=\frac{3.98}{4.42}-0.387=0.513
\end{aligned}
$$

