CHHATRAPATI SHAHU JI MAHARAJ UNIVERSITY

DRUGS FOR NEURODEGENERATIVE DISEASE { PARKINSONISM }

PHARMACOLOGY & TOXICOLOGICAL SCREENING METHODS - 1ST

CONTENT

- INTRODUCTION
 CAUSES OF PARKINSON DISEASE
- SYMPTOMS
- PREVENTION
- PATHOPHYSIOLOGY
- ✤ TREATMENT

SCREENING METHODS FOR PARKINSON DISEASE

INTRODUCTION

- Parkinson's disease (PD), which is the second most common neurodegenerative disorder after Alzheimer's disease, is firstly defined after James Parkinson.
- It is a movement disorder & combination of tremor. (shaking movement)
- Parkinson's disease was first medically described as a neurological syndrome by James Parkinson in 1817.
- Parkinson's is a long term neurodegenerative disease disorder of the central nervous system that mainly affect the motor system.
- The symptoms appear slowly & as the disease worsens , non motor symptoms become more common.

- In Parkinson's disease, certain nerve cells (neurons) in the brain gradually break down or die.
- In parkinsonism is disease neuron from substantia nigra to corpus striatum of basal ganglia are lost.
- This result in reduced dopamine activity in basal ganglia causing movement problems like hypokinesia, rigidity and tremors.
- Many of symptoms are due to a loss of neurons that produce a chemical messenger in your brain called dopamine.

	PARKINSON('S) DISEASE (PD)
SUBSTOLITIO	* MOVEMENT DISORDER *
SUBSTANIIA	NEURON DOPAMINE
-AP-	

SYMPTOMS

- ✤ Parkinson's disease (PD) is typically characterized by …
- ✤ When dopamine levels decrease , it causes to impaired movement
- Motor (movement) symptoms. These symptoms
- include : other symptoms of Parkinson's disease.
- Tremor at rest, such as a slight tremor in hand or feet.
- Rigidity (stiffness) of limbs, neck, or shoulder.
- Difficulty balancing (postural instability).
- Slowness of movement or gradual loss of spontaneous movement (bradykinesia).

CAUSES

The cause of Parkinson's disease in unknown, but several factors appear to play a role, including :

Genes: Certain gene variations appear to increase the risk of Parkinson's disease.

Environmental triggers : Exposure to certain toxins or environmental factors may increase the risk of later Parkinson's disease, but the risk is small.

Risk factors

Risk factors for Parkinson's disease include :

Age : Young adult rarely experience Parkinson's disease. It ordinarily begins in middle or late life, & the risk increase with age . People usually develop the disease around age 60 or older .

□ NON – MOTOR SYMPTOMS :

- Symptoms may also differ in severity among different people. Some possible non-motor symptoms include:
- Reduced sense of smell (Hyposmia).
- Gastrointestinal issues , such as constipation.
- Urinary issues, like a frequent & urgent need to urinate.
- A drop in blood pressure that occurs when standing (orthostatic hypotension)
- Excessive sweating.
- Problem with sleep & wakefulness, including excessive daytime sleeping, tiredness.
- Behavioral problem may also occurs with depression, anxiety, & apathy occurring in many people with PD.

THE MOST OBVIOUS EARLY SYMPTOMS ARE TREMOR , RIGIDITY, SLOWNESS, OF MOVEMENT & DIFFICULTY WITH WALKING

ightarrow Sex : Men are more likely to develop Parkinson's disease than women.

Heredity : Having a close relative with Parkinson's disease increases the chances that you'll develop the disease.

PREVENTION

- Because the cause of Parkinson's is unknown, there are no proven ways to prevent the disease.
- Regular aerobic exercise might reduce the risk of Parkinson's disease.
- Some other research has shown that people who consume caffeine which is found in coffee, tea & cola – get Parkinson's disease less often than those who don't drink it.

PATHOPHYSIOLOGY :

ETIOLOGICAL FACTOR ENVIRONMENTAL FACTOR GENE MUTATION

DEGENERATIVE DISEASE DESTRUCTION OF DOPAMINERGIC NEURONAL CELLS IN THE SUBSTANTIA NIGRA IN THE BASAL GANGLIA.

NEURONAL CELLS LOSS

DEGENERATION OF DOPAMINERGIC ACTIVITY PARTICULARLY IN THE NIGRO – STRIATAL PATHWAY

DEPLETION OF DOPAMINE STORE IMBALANCE B/W EXCITATORY (ACETYLCHOLINE) & INHIBITING (DOPAMINE) NEUROTRANSMITTER IN THE CORPUS STRIATION.

IMPAIRMENT OF EXTRAPYRAMIDAL TRACT CONTROLLING COMPLEX BODY MOVEMENT

TREATMENT

DOPAMINE PROMOTER
 ANTIDEPRESSANT
 COGNITION – ENHANCING
 MEDICATION
 ANTI-TREMOR
 EXERCISE

SCREENING MODELS FOR PARKINSON'S DISEASE

- Tremorine and oxotremorine antagonism
- MPTP model in monkeys
- Reserpine antagonism model
- 6 OHDA induced model
- Pesticide induced model

TREMORINE & OXOTREMORINE ANTAGONISM

- ANIMAL : Mole NMRI mice (18 22 gm)
- STANDARD DRUG : 5 mg / kg (Benzotropine mesilate)
- INDUCER : 0.5 mg / kg (oxotremorine) by S.C route
- PROCEDURE :

Groups of 6 – 10 male NMRI mice weighing 18 -22 g are used

They are dosed orally with the test compound or the standard (5 mg / kg benzatropine mesilate) 1 hour prior the administration of 0.5 mg / kg oxotremorine

S.C.

Rectal temperature is measured before administration of the compound (basal value) &1,2 &3 h after oxotremorine injection.

Tremor is scored after oxotremorine dosage in 10 sec . Observation periods every 15 min for 1 hour.

Salivation & lacrimation are scored 15 & 30 min after oxotremorine injection.

*	Absent	0
*	Slight	1
*	Medium	2
*	Severe	3

Evaluation

> Hypothermia :

The differences of body temperature after 1, 2 & 3 h versus basal values are summarized for each animal in the control group & the test groups.

The average values are compared statistically.

Tremor :

- the scores for all animals in each group at the 3 observation periods are summarized.
- The numbers in the treated groups are expressed as percentage of the number of the control groups.

- Salivation and lacrimation :
- The scores for both symptoms for all animals in each group are summarized at the 2 observation periods.
- The numbers in the treated groups are expressed as percentage of the number of the control group.

MPTP MODEL IN MONKEYS

> PURPOSE AND RATIONALE :

- ✤ N MPTP (N methyl -4- phenyl 1,2,3,6- tetrahydropyridine) has been shown to cause symptoms of Parkinson's disease in exposed individuals.
- When administration to primates this compound causes a partial destruction of basal ganglia and a syndrome that resembles Parkinson's disease.

PROCEDURE :

- Burns et al. (1983) treated 8 adult rhesus monkeys weighing 5–8 kg over a period of 5–8 days with cumulative intravenous doses of *N-methyl-4-phenyl-*1,2,3,6-tetrahydropyridine (N-MPTP) up to 10–18 mg/kg.
- These animals showed a parkinsonism like disorder (akinesia, rigidity, postural tremor, flexed posture, eyelid closure, drooling)
- Which was reversed by the administration of L-dopa.
 The pathological and biochemical changes produced by N-MPTP are similar to the well established changes in patients with Parkinsonism.

EVALUATION : THE SEVERITY OF PARKINSONISM SYMPTOMS IS RATED BY TRAINED OBSERVERS

- movement (o: normal; 1: reduced; 2: sleepy)
- checking movements (o: present; 1: reduced; 2: absent)
- attention and blinking (o: normal; 1: abnormal)
- posture (o: normal; 1: abnormal trunk; 2: abnormal trunk and tail; 3: abnormal trunk, tail, and limbs; 4: flexed posture)
- balance and coordination (o: normal; 1: impaired; 2: unstable; 4: falls)
- reactions (o: normal; 1: reduced; 2: slow; 3: absent)
- vocalizations (o: normal; 1: reduced; 2: absent).

RESERPINE ANTAGONISM

Purpose and rational

- Reserpine induces depletion of central catecholamine stores.
- The sedative effect can be observed in mice shortly after injection, followed by signs of eyelid ptosis, hypokinesia, rigidity, catatonia, and immobility.
 These phenomena can be antagonized by dopamine aonists.