OBSERVATIONAL STUDIES

By
Swarnakshi Upadhyay
Assistant Professor
School of Pharmaceutical Sciences
C.S.J.M. University, Kanpur

CONTENTS

- 1. Introduction of observational study
- 2. Advantages
- 3. Disadvantages
- 4. Application
- 5. Types of observational study
 - 1) Cohort study
 - 2) Case control study
 - 3) Cross sectional study

INTRODUCT ION

- **Definition**: The population is observed without any interference by the investigator.
- A type of study in which individuals are observed or certain outcomes are measured. No attempt is made to affect the outcome (for example, no treatment is given).

WHY OBSERVATIO NAL STUDIES

- Cheaper
- Can examine long term effect
- Hypothesis generation
- Sometime, experimental study are not ethical

1. COHORT STUDIES

- A cohort study is an observational study in which participants are selected and followed forward in time, to see how likely disease is to develop within the group.
- Other name of cohort study are longitudinal study, incidence study and forward-looking study.

STEPS OF COHORT STUDY

- 1
- Selection of study population
- 2
- Obtaining data on exposure
- 3
- Selection of comparison grp
- Y
- Follow up
- 5
- Analysis

Park Alleria	Disease		
Risk factor	Present	Absent	Total
Present (smoker)	300(a)	200(b)	500 (a+b)
Absent (nonsmoker)	120(c)	380(d)	500 (c+d)

Incident rate among smoker
$$=\frac{a}{a+b}$$
 $x = \frac{a(300)}{a+b(500)} * 100 = 60\%$

Incident rate among nonsmoker
$$=\frac{c}{c+d}$$
 $x = \frac{c(120)}{c+d(500)} * 100 = 24\%$

 $\frac{\text{Relative risk or}}{\text{Risk ratio}} = \frac{\text{Incident rate among smoker}}{\text{Incident rate among nonsmoker}}$

$$=\frac{60}{24} = 2.5$$

Means smoker having 2.5 times more chances of developing lungs carcinoma than nonsmoker.

ADVANTAGE S

- Incidence rat, relative risk, attributable risk can be calculated.
- Provide direct estimate of risk.
- Multifactor can be studies simultaneously.
- Minimizes recall bias.

DISADVANT AGES

- Large population is needed.
- Not suitable for rare disease.
- It is time consuming
- Expensive.
- Certain administrative problem like loss of staff, loss of funding.
- Ethical problem.

2.CASE CONTROL STUDY

- A case control study is define as an researcher start by picking up case who have already developed particular disease and who have not developed disease but similar to group.
- The study proceeds backward from effect to cause.

2. CASE CONTROL STUDY

- A case control study involves two population case and control.
- Case: A person in the population or study group identified having the particular disease, health disorder or condition under investigator.
- Control: It use a control or comparison group to support inference.
- Control must be ideally matching with the cases by age, sex and other characteristics except the control must not be suffering from disease.

ELEMENT OF A CASE CONTROL STUDY

- 1. Selection of case
- 2. Selection of controls
- 3. Information on exposure
- 4. Analysis

ELEMENT OF A CASE CONTROL STUDY

1. Selection of cases

- Preferably new cases or incidence case.
- Random selection, Convenient selection.

2. Selection of control

- Control must be ideally matching with the cases by age, sex and other characteristics except the control must not be suffering from disease.
- Hospital control, Random selection, Friend and relative.
- Control from general population.

ELEMENT OF A CASE CONTROL STUDY

3. Information on exposure

- Observation
- Interviews
- Examination of records

4. Analysis

- Exposure rates among the disease(case)
- Exposure rates among the non disease
- Odd s ratio

Disease condition	smoking		
	Present	Absent	Total
Present Lung cancer	80(a)	20(b)	100 (a+b)
Absent Non cancer	50(c)	50(d)	100 (c+d)

Exposure ratio among
$$= \frac{a}{a+b} \qquad x = \frac{a (80)}{a+b (100)} * 100 = 80\%$$
 disease (case)

Exposure ratio among non
$$= \frac{c}{c+d} \qquad x = \frac{a (50)}{a+b (50)} * 100 = 50\%$$
 disease (control)

Disease condition	smoking		
	Present	Absent	Total
Present Lung cancer	80(a)	20(b)	100 (a+b)
Absent Non cancer	50(c)	50(d)	100 (c+d)

Odds ratio =
$$\frac{ad}{bc}$$
 = $\frac{80 * 50}{20 * 50} * 100 = 4\%$

Interpretation those who are smoking having 4 times higher chances of developing lung cancer than non smoker.

ADVANTAGES

- Minimal ethical problem
- Efficient for the study of chronic disease
- Less expensive than alternative designs
- Multiple risk factor can be examine
- Easy to carry out
- Rapid and inexpensive
- Rare disease investigation
- No risk to subjects

DISADVANTAGES

- Selection of an appropriate comparison group may be difficult.
- Control selection is difficult.
- Susceptible to recall bias.

APPLICATION

- Evaluating vaccine effectiveness
- Evaluation of treatment and program
- Evaluation of screening
- Outbreak investigation
- Occupation health research

3.CROSS SECTIONAL STUDY

• Introduction:

- In cross sectional study both exposure and disease outcome are determine simultaneously for each subject.
- Cross sectional study is a study in which all the measurement are taken particular point in time.
- We identify prevalent cases of disease.
- When study only measure health outcome it is known as descriptive cross sectional study.

INTRODUCTION

- When a study measure both exposure and health outcome at same time it is known as analytical cross sectional study.
- Snapshot studies
- Observational at a single hypothetical point in time.

EXAMPLE

Prevalence rate =

Number of prevailing cases of disease (old and new)existing at given point of time

*1000

Estimated population at the same point of time (multiloading factor can be chosen as appropriate)

EXAMPLE

Disease condition	smoking		
	Present	Absent	Total
Present Lung cancer	80(a)	20(b)	100 (a+b)
Absent Non cancer	50(c)	50(d)	100 (c+d)

Prevalence in expose = $\frac{80}{100} = 0.8$

Prevalence in non expose= $\frac{50}{100} = 0.5$

Prevalence ratio= $\frac{0.8}{10.5} = 1.6$

ADVANTAGES

- Useful in hypothesis formation
- Easy to obtain prevalence (outcome and exposure)
- Provide estimate of disease burden
- Relative short duration
- Easy and quick
- Less costly

DISADVANTAGES

- With no comparison group, no formal assessment of relationship between exposure and outcome
- Not suitable for rare disease
- Recall bias

