

Entrepreneurial Microbiology: Regulations

Exploring the Business and Compliance Aspects of Proprietary Microbial Innovations

Dr Shilpa Deshpande Kaistha
Department of Biotechnology
School of Life Sciences & Biotechnology
CSJM University Kanpur

Quality Control

- Quality Control (QC) refers to the systematic procedures used to ensure that microbiological products (e.g., probiotics, vaccines, biofertilizers, fermented foods) meet safety, efficacy, and regulatory standards.
- Ensures consistency, reliability, and compliance in microbial processes and final products.
- Challenges for QC
- Contamination risks Cross-contamination affecting purity.
 Strain stability issues Mutation or loss of function over time.
 Regulatory compliance Meeting stringent global safety norms.

2. Key Aspects of QC in Microbiology

Aspect	Purpose	Example
Sterility Testing	Ensures no unwanted microbial contamination	Pharmaceutical vaccines, injectable probiotics
Microbial Load Testing	Verifies acceptable limits of bacteria, yeast, fungi	Fermented foods, cosmetics
Endotoxin Testing	Checks for bacterial toxins that may be harmful	Biopharmaceuticals, probiotics
Viability & Potency Testing	Confirms microbial count and activity	Probiotic supplements, biofertilizers
Genetic Stability Testing	Ensures engineered microbes maintain intended traits	Recombinant vaccines, GM bacteria
Product Consistency	Ensures batch-to-batch uniformity	Industrial enzyme production

Regulatory Standards for QC

- **WHO GMP (Good Manufacturing Practices)** − Global standard for pharmaceuticals & biotech.
- ✓ ISO 9001 & ISO 13485 International QC standards for medical devices & bioproducts.
- ✓ **US FDA & European EMA** Guidelines for microbiological drug approval.
- FSSAI & BIS (India) Regulations for microbial food products.
- Food Microbiology
- What is FPO (Fruit Products Order, 1955)?
- The Fruit Products Order (FPO), 1955 was established under the Essential Commodities Act, 1955 to regulate the quality of processed fruit and vegetable products in India.
- Ensured **hygienic manufacturing, proper labeling, and quality standards** for products like jams, juices, pickles, and ketchup.
- Replaced by FSSAI regulations in 2011, integrating it into the Food Safety and Standards Act (FSSA), 2006.
- FPO certification was mandatory for fruit-based food industries to ensure product safety. Now, FSSAI certification has taken over FPO's role for quality control.

HACCP:Hazard Analysis and Critical Control Points

HACCP is a globally recognized **food safety management system** that identifies, evaluates, and controls hazards in food production.

3. Principles of HACCP

Step	Description	Example in Microbiology QC
1. Hazard Analysis	Identify biological, chemical, and physical hazards	Detecting Salmonella in poultry
2. Critical Control Points (CCP)	Determine points where hazards can be controlled	Pasteurization of milk to kill pathogens
3. Critical Limits	Set limits for controlling hazards	Cooking meat at >75°C to kill E. coli
4. Monitoring Procedures	Ensure CCPs are maintained	Regular microbial testing in dairy processing
5. Corrective Actions	Address deviations from safety limits	Discarding spoiled or contaminated batches
6. Verification	Validate HACCP plan effectiveness	Conducting audits & microbial load testing
7. Documentation & Record- Keeping	Maintain safety logs for compliance	Daily quality check reports in food factories

Quality Assurance

- Quality Assurance (QA) is a proactive, systematic approach to ensure that microbiology-based products and processes consistently meet regulatory and safety standards before reaching consumers.
- Focuses on preventing defects rather than detecting them after production.

2. Difference Between QA and QC

Aspect	Quality Assurance (QA)	Quality Control (QC)
Focus	Prevention – ensures processes are correct	Detection – tests final product quality
Approach	Process-oriented	Product-oriented
Objective	Compliance with standards, preventing defects	Identifying and correcting defects
Example	Ensuring sterile environment in vaccine production	Testing sterility of the final vaccine batch

3. Key Components of QA in Microbiology

QA Component	Purpose	Example
Good Manufacturing Practices (GMP)	Ensures standardized production processes	Biopharma, food safety
Standard Operating Procedures (SOPs)	Ensures uniformity in lab practices	Microbial fermentation, enzyme production
Validation & Verification	Confirms accuracy of microbial processes	PCR testing validation in diagnostics
Documentation & Record- Keeping	Ensures traceability & compliance	Batch records for probiotics
Training & Audits	Prevents human errors & improves efficiency	QA audits in vaccine manufacturing

WHO-GMP & GLP (Good Laboratory Practices) – Global microbiology QA standards.

✓ ISO 9001 & ISO 17025 – Quality management & lab accreditation.

FDA & EMA Guidelines – Biopharma & food microbiology regulations.

FSSAI (India) – QA in food microbiology & probiotics.

Regulatory Bodies

- WHO, CDC, and NIH Guidelines for handling high-risk microbes.
- The Biological Weapons Convention (BWC) restricts the development of microbial weapons.
- Research Ethics Committees (REC) ensure ethical use of microbiological innovations
- US FDA (Food and Drug Administration)
- Regulations for probiotics, microbial therapeutics, and bioengineered foods
- cGMP (Current Good Manufacturing Practice) compliance
- FAO (Food and Agriculture Organization)
- Guidelines for safe use of microbes in food and agriculture
- Codex Alimentarius and microbial food safety

Biosafety Regulations in India: Regulatory Bodies & Framework

India has a well-defined biosafety regulatory framework to oversee genetically modified organisms (GMOs), living modified organisms (LMOs), and microbial biotechnology products. The country follows the Cartagena Protocol on
 Biosafety under the Convention on Biological Diversity (CBD) and has established national regulations to manage biosafety risks.

1. Key Regulatory Bodies in India

Regulatory Body	Function
Ministry of Environment, Forest & Climate Change (MoEFCC)	The nodal ministry for biosafety regulations and policy-making.
Genetic Engineering Appraisal Committee (GEAC)	Grants approvals for large-scale use, field trials, and commercialization of GMOs.
Review Committee on Genetic Manipulation (RCGM)	Under DBT; oversees lab research, preclinical studies, and contained field trials.
Institutional Biosafety Committee (IBSC)	Internal committee in research institutes/industries that evaluates biosafety at the institutional level.
State Biotechnology Coordination Committee (SBCC)	Ensures enforcement of biosafety rules at the state level.
District Level Committee (DLC)	Monitors biosafety compliance at the district level.

Key Biosafety Regulations in India

- (A) Environment Protection Act (EPA), 1986
- Parent law under which biosafety rules are framed.
- Empowers the MoEFCC to regulate GMOs and their environmental impact.
- (B) Rules for Manufacture, Use, Import, Export, and Storage of Hazardous Microorganisms, 1989 (Biosafety Rules, 1989)
- First official biosafety framework in India under the EPA, 1986.
- Regulates research, production, and use of GMOs, hazardous microbes, and recombinant DNA technology.
- Requires approval from GEAC, RCGM, and IBSC before releasing GMOs into the environment.

Key Biosafety Regulations in India

- (C) National Biodiversity Act, 2002
- Implements Access and Benefit Sharing (ABS) for microbial and genetic resources.
- Aligns with the Nagoya Protocol to prevent biopiracy.
- (D) Food Safety & Standards Authority of India (FSSAI) Regulations
- FSSAI regulates **GMOs in food products**, ensuring compliance with labeling and safety standards.
- Mandatory GMO labeling for food products containing GM ingredients.
- (E) Drugs & Cosmetics Act, 1940 (For GMOs in Pharma & Biopharma)
- The Central Drugs Standard Control Organization (CDSCO) regulates genetically engineered microbes used in pharmaceuticals and vaccines.

Approval Process for Microbial GMOs in India

- Institutional Biosafety Committee (IBSC) → Approves laboratory research.
- Review Committee on Genetic Manipulation (RCGM, DBT) → Approves controlled field trials.
- Genetic Engineering Appraisal Committee (GEAC, MoEFCC) → Grants environmental release and commercialization approval.
- State Biotechnology Coordination Committee (SBCC) & District Level Committees (DLC) → Monitor compliance at the local level.
- **Bt Cotton (First Approved GMO Crop, 2002)** Approved by GEAC, but faced legal and environmental challenges.
 - ♦ **GM Mustard (DMH-11)** Approved by GEAC in 2022 but faced public opposition.
 - ◇ Recombinant Vaccines (E.g., Covaxin, ZyCoV-D) Regulated under CDSCO and RCGM for biotech safety.

Summary

- Secret processes drive innovation but must balance ethics, quality, and compliance
- Entrepreneurs in microbiology must navigate IP protection, regulations, and QC
- **❖** Role of AI and automation reduce need for secret processes
- How to balance transparency and business success